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Abstract

In this paper, we represent Integrated Conditional Moment (ICM) tests in Reproducing

Kernel Hilbert Spaces (RKHS). There are several advantages to doing so. First, reproduc-

ing kernels embody dimension and integral measure, and hence, are effective dimension

reduction tools. This phenomenon can be explained by the isometrically isomorphic rela-

tionship among infinite dimensional Hilbert spaces. Second, the test statistics, expressed

in terms of kernels, have analytic closed forms, making them easy to compute in practice.

Third, one can generate kernels easily and massively from existing kernels. Each kernel

corresponds to an ICM test, thus, for certain models, one may obtain a more sensitive test

than by using conventional ones. We further propose projection-based kernels to eliminate

the estimation effect, leading to a simple multiplier bootstrap procedure to obtain critical

values. A minimum distance estimator is developed as a byproduct. Monte Carlo exer-

cises are performed to examine the finite-sample performance of the proposed test, and an

empirical application is also provided.

JEL Classification: C12; C13; C15; C52

Keywords: Conditional Moment Restriction, Specification Tests, Reproducing Kernel

Hilbert Spaces, Multiplier Bootstrap

1. Introduction

In this paper, we study the question of testing conditional moment restriction (CMR)

models. Specifically, we develop a new framework for deriving integrated conditional mo-

ment (ICM) test statistics. This framework is based on the idea of embedding CMR in

a reproducing kernel Hilbert space (RKHS). The test statistic is defined as the maximum
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moment restriction (MMR) within the unit ball of the RKHS. Furthermore, we show that

MMR corresponds to the RKHS norm of a Hilbert space embedding of conditional moments.

We contribute to the literature in the following aspects.

Closed Form Expression. ICM statistics, as its name suggests, is obtained after inte-

grating the nuisance parameter of infinite many unconditional moment restrictions (UMR).

This integration often leads to numerical challenges, and only a few weighting functions

and integral measures are known in the literature to generate closed-form statistics, e.g.,

Bierens (1982); Escanciano (2006a). In our framework, the MMR is obtained directly from

a user-chosen reproducing kernel without integration. Furthermore, we show that the MMR

captures all information about the original CMR and it has a closed-form expression which

eases practical implementation.

Dimension Reduction. The dimension of conditional variables often poses practical

and theoretical challenges when conducting CMR specification tests. Most of the existing

ICM tests depend on high-dimensional stochastic processes, e.g., Domı́nguez and Lobato

(2015), and their power performance often drops significantly as the dimension d increases

due to the data sparseness. One common solution is to project the original conditional

covariates X onto the β⊤X for all ∥β∥2 = 1, see, e.g., Escanciano (2006a); Lavergne and

Patilea (2012); Sant’Anna and Song (2019). Here, ∥·∥2 denotes the Euclidean norm. How-

ever, due to the involvement of infinite directions, projection-based tests are often com-

putationally intensive and the powers of these tests are often low (Guo and Zhu, 2017).

Reproducing kernels, on the other hand, embody both the dimension and the integral mea-

sure. As a result, the estimator of the MMR converges in the RKHS norm in a way that

is independent of the dimension. This is an appealing property since tests based on this

estimator are less sensitive to the curse of dimensionality.

Massively Generate New Tests. Existing literature has shown that the power of an

ICM test is determined by the weighting function, the integral measure, the data-generating

process (DGP) and the model itself. See, e.g., Escanciano (2009). Thus, an ICM test

statistic might be powerful against one model and one DGP but could be powerless against

another model or another DGP. Hence, it is desirable to have as many ICM test statistics

as possible. We provide methods to construct new kernels from existing kernels. Since each

kernel corresponds to an ICM test statistic, this means that one could generate infinitely

many new ICM test statistics, all have closed-form expressions.

Eliminate Estimation Effect. We propose a projected kernel to cancel the estimation

effect. The limiting null distribution, therefore, does not depend on how an estimator is

obtained and does not require the estimator to be
√
n-asymptotically linear, with n the

sample size. Without the estimation effect, critical values are obtained via a simple and

fast multiplier bootstrap procedure, and perhaps most interestingly, the proposed test is

capable of applying to certain “non-standard” estimators who have slower convergence rates.
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New Limit Distribution. We derive the limit distribution of the proposed test statis-

tic under the fixed alternative. This new result provides a framework to obtain a more

powerful test by selecting an optimal kernel. Nevertheless, much work is needed to fully

achieve this goal.

A Minimum Distance Estimator. We propose a minimum distance estimator based

on the MMR. Compared to existing minimum distance estimators, e.g., Domı́nguez and

Lobato (2004), it has the advantage of being less sensitive to the curse of dimensionality.

The rest of the paper is organized as follows. Section 2 presents our main idea of using

the RKHS framework to develop the test statistic. We discuss some merits of doing so, as

well as the challenges when unknown parameters are replaced by their estimators. Section

3 describes a method for projecting a kernel onto a tangent space of nuisance parameters so

that the modified statistic is free from the estimation effect. We also establish the asymptotic

properties of our test in this section. In section 4, we introduce a simple multiplier bootstrap

procedure to obtain critical values and justify its asymptotic validity. Based on the test

statistic, we propose a minimum distance estimator, its asymptotic properties are studied

in Section 5. Section 6 conducts Monte Carlo experiments. Simulation results indicate that

the proposed tests have an accurate empirical size and a good local power, even when the

sample size is as small as n = 100 and the dimension is as high as d = 20. Simulation results

also suggest that the proposed tests have good power against high-frequency alternatives.

One empirical application is studied in Section 7. Section 8 concludes. Some backgrounds

on the RKHS are presented in Appendix A. A concise introduction of RKHS can be found

in Carrasco et al. (2007), while for more comprehensive surveys on this subject, see, e.g.,

Hofmann et al. (2008); Paulsen and Raghupathi (2016).

2. Main Idea, Benefits and Challenges

2.1 Expressing the Conditional Moment Restrictions in RKHS

Let Z = (Y,X⊤)⊤ be a random vector taking values in Z ⊆ R1+d with distribution PZ ,

X a random vector taking values in X ⊆ Rd with distribution PX , and Θ ∈ Rr a parameter

space. Typically, Y represents the real-valued dependent (or response) variable, and X is

the explanatory variable. Under E|Y | < ∞, it is well-known that the regression function

E (Y |X) is well-defined and is the ‘best’ prediction of Y given X, in a mean squared sense.

In empirical studies, it is common to consider the following expression:

Y = Eθ0 (Y |X) + ε

= M(X; θ0) + ε

We are interested in testing the moment restriction models where the only information

about the unknown parameter θ0 ∈ Θ is a set of conditional moment restrictions:

E(X; θ0) = E (ε(Z; θ0)|X) = E (Y −M(X; θ0) | X) = 0 PX -a.s., (1)
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here, ε : Z ×Θ → R is the generalized residual function whose functional form is known up

to the parameter θ ∈ Θ.

Given an i.i.d sample {xi, yi; i = 1, . . . , n} drawn from a distribution PZ , our goal is to

conduct specification testing:

H0 : E(X; θ0) = 0 PX -a.s.

H1 : E(X; θ0) ̸= 0 PX -a.s. ∀θ ∈ Θ
(2)

where θ0 has a consistent estimator θ̂. To do so, we follow the integrated conditional moment

(ICM) approach, which converts the constraint on the conditional expectation to infinite

and parametric unconditional orthogonality restrictions. Let H be a set of measurable

functions on X , then

E(X; θ0) = 0 ⇔ E (ε(Z; θ0)h(X, t)) = 0, PX -a.s. ∀t ∈ T , h ∈ H (3)

where T is some proper space. For sufficient conditions on the family H to satisfy (3), see

Bierens and Ploberger (1997); Escanciano (2006b). In the context of this work, H must

consist of infinitely many instruments for the conditional moment test to be consistent

against all alternatives.

Equivalently, any θ0 ∈ Θ that satisfies (3) must also satisfy the maximum moment

restriction (MMR) (Muandet et al., 2020):

sup
h∈H

∥E (ε(Z; θ0)h(X, t))∥22 = 0 (4)

However, the sup operator makes it hard to optimize (4). We resolve this issue by

restricting H to be a unit ball in an RKHS. To express (4) using the RKHS, let h : X → R,
and H(k) be the RHKS of functions on X with reproducing kernel k. The subsequent

analyses rely on the following assumptions:

• (A1) The random vector (X,Z) is a strictly stationary process with probability mea-

sure PXZ .

• (A2) Some regularity conditions. (i) the function ε : Z × Θ → R is continuous on Θ

for each z ∈ Z; (ii) E(x; θ) exists and is finite for every θ ∈ Θ and x ∈ X for which

PX(x) > 0; (iii) E(x; θ) is continuous on Θ for all x ∈ X for which PX(x) > 0.

• (A3) There is a unique θ0 ∈ Θ◦ for which E(X; θ0) = 0, a.s., and P (E(X; Θ) = 0) < 1

for all θ ̸= θ0, where Θ◦ is the interior of Θ.

• (A4) The kernel k(·, ·) is integrally strictly positive definite (ISPD), continuous and

bounded, i.e., supx∈X
√
k(x, x) <∞.
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Assumptions A1 and A2 are regular conditions that appeared in most literature. As-

sumption A3 is a global identification assumption, and Assumption A4 put restrictions on

the kernel k and is essential for the identification of the model. An ISPD kernel satisfies∫ ∫
X
f(x)k(x, x′)f(x′)dxdx′ > 0, ∀∥f∥2 ̸= 0

where ∥·∥2 denotes the L2 norm.

Define an operator Cθ : H(k) → R that takes an instrument h ∈ H(k) as input and

returns the corresponding moment restrictions:

Cθh = EXZ (ε(Z; θ)h(X))

By the reproducing property of the RKHS, we have

h(x) = ⟨h, ϕx(·)⟩H(k)

where ϕx(·) = k(x, ·) is the feature map of this RKHS with k(x, x′) = ⟨ϕx(·), ϕx′(·)⟩H(k).

By Riesz’s representation theorem, one can show that

Cθh = ⟨h,µθ⟩H(k) (5)

where

µθ = EX (E(x; θ)ϕx(·)) = EXZ (ε(Z; θ)ϕX(·)) (6)

is called the Conditional Moment Embedding (CME) (Muandet et al., 2017, 2020). Its

verification can be found in Appendix C. The idea of CME is to extend the feature map ϕ

to the space of probability distribution PX and the space of conditional moment restrictions

E(X; θ) by representing both elements as a mean function. Through Equation (6), most

RKHS methods can therefore be extended to conditional moment restrictions.

Remark. Since ϕx(·) takes values in the RKHS, the integral
∫
ε(z; θ)ϕx(·)dPXZ(x, z)

should be interpreted as a Bochner integral (see Dinculeanu (2000) for the definition of the

Bochner integral).

This representation is useful. Given ISPD kernels, the CME (or equivalently, the MMR)

captures all information about the conditional moment restrictions. In other words, µθ is

injective, implying that for any θ1, θ2 ∈ Θ, E(x; θ1) = E(x; θ2) for PX -almost surely if and

only if µθ1 = µθ2 . An important consequence is ∥µθ∥2H(k) ≥ 0 and ∥µθ∥2H(k) = 0 if and only

if θ = θ0. See, e.g., Muandet et al. (2020) for a detailed discussion.

To summarize so far, the MMR condition in (4) then can be written as

sup
∥h∥H(k)≤1

∥E (ε(Z; θ0)h(X, t))∥22 = ∥Cθ∥2 = ∥µθ0∥
2
H(k)

and the original null hypothesis is equivalent to

H0 : ∥µθ0∥
2
H(k) = 0, Px-a.s
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To simplify notation, let M2(θ0) = ∥µθ0∥
2
H(k), and further notice that

M2(θ0) = ⟨EXZ(ε(Z; θ)ϕX(·)),EXZ(ε(Z; θ)ϕX(·))⟩H(k)

= EXZ

(
⟨ε(Z; θ)ϕX(·),EXZ(ε(Z; θ)ϕX(·))⟩H(k)

)
= E

(〈
ε(Z; θ)ϕX(·), ε(Z ′; θ)ϕX′(·)

〉
H(k)

)
= E

(
ε(Z; θ0)k(X,X

′)ε(Z ′; θ0)
)

Then, given a consistent estimator θ̂, we propose a simple test statistic nM̂2
n(θ̂) as

nM̂2
n(θ̂) =

n

n(n− 1)

∑
1≤i ̸=j≤n

ε(zi; θ̂)k(xi, xj)ε(zj ; θ̂)

The asymptotic distributions of nM̂2
n(θ̂) under different hypotheses are complicated due

to the presence of the estimator θ̂. In Section 3, we propose a projection-based test that

has the ability to eliminate this estimation effect. Hence, we will not study the asymptotic

distributions of nM̂2
n(θ̂) in detail.

2.2 Benefits of using RKHS Techniques: Insensitive to Dimension and

Massively Generate ICM Tests

2.2.1 Dimension Reduction

Let µ̂θ̂ = 1/n
∑n

i=1 ε(zi; θ̂)ϕxi(·) ∈ H(k) be an estimator of µθ0 , and suppose θ̂ − θ0 =

Op(1/
√
n). Let g(z; θ) = ∇θε(z; θ) be the first derivative of ε(z; θ), and θ̄ = γθ0+(1−γ)θ̂, γ ∈

(0, 1). Notice that

µ̂θ̂ =
1

n

n∑
i=1

ε(zi; θ0)ϕxi(·) +Op(1/
√
n)⊤

1

n

n∑
i=1

g(zi; θ̄)ϕxi(·)

and

∥µ̂θ̂ − µθ0∥H(k) = ∥µ̂θ0 +Op(1/
√
n)⊤

1

n

n∑
i=1

g(zi; θ̄)ϕxi(·)− µθ0∥H(k)

≤ ∥µ̂θ0 − µθ0∥H(k) +Op(1/
√
n)

√√√√ 1

n2

n∑
i,j=1

g⊤(zi; θ̄)k(xi, xj)g(zj ; θ̄)

= ∥µ̂θ0 − µθ0∥H(k) +Op(1/
√
n)

Furthermore, Muandet et al. (2017); Tolstikhin et al. (2017) show that

∥µ̂θ0 − µθ0∥H(k) = Op(1/
√
n)

This observation states that µ̂θ̂ converges in the RKHS norm in a way that is independent

of the dimension of (X,Z). This is an appealing property since estimation and inference

based on µ̂θ̂ is less sensitive to the curse of dimensionality.
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The following isomorphic result helps us to investigate where the dimensionality is ‘hid-

ing’. Let L2(R1+d,Π) = {f : R1+d → R, s.t.∥f∥ =
(∫

|f |2dΠ
)1/2

<∞}.
Since both the RKHS and the L2(R1+d,Π) are separable and infinite dimensional Hilbert

spaces, these two spaces are isometrically isomorphic, i.e., there exists a one-to-one linear

mapping J : H(k) → L2(R1+d,Π) such that

⟨J(f), J(g)⟩L2(R1+d,Π) = ⟨f, g⟩H(k), f, g ∈ H(k)

See Carrasco et al. (2007) for details.

Notice that the V -statistic version of nM̂2
n(θ̂) can be thought as

n

n2

n∑
i,j=1

ε(zi; θ̂)k(xi, xj)ε(zj ; θ̂) =

〈
1√
n

n∑
i=1

ε(zi; θ̂)ϕxi(·),
1√
n

n∑
j=1

ε(zj ; θ̂)ϕxj (·)

〉
H(k)

=

〈
1√
n

n∑
i=1

ε(zi; θ̂)J(ϕxi(·)),
1√
n

n∑
j=1

ε(zj ; θ̂)J(ϕxj (·))

〉
L2(R1+d,Π)

(7)

where the first equality is a consequence of the reproducing property, and the last equality

arises from the isometrically isomorphic relationship. Thus, the proposed test statistic

nM̂2
n(θ̂) is a U -statistic version of an ICM test with a weighting function J(ϕx(·)).
Furthermore, when the kernel is chosen to be ‘shift-invariant’, i.e., the kernel solely

depends on the difference of its arguments,

k(x, x′) = ψ(x− x′)

a more specific ICM structure is revealed by the following characterization, which is due to

Bochner (1933), see also Rudin (2017). We state it in the form given by Wendland (2004).

Theorem 1 (Bochner). Let k(x, x′) = ψ(x− x′) be a shift-invariant kernel for continuous

function ψ : Rd → C. Then ψ is positive definite if and only if it is the Fourier transform

of a finite nonnegative Borel measure Λ on Rd:

ψ(t) =

∫
Rd

exp(−i⟨t, ω⟩)dΛ(ω)

for t ∈ Rd.

One may normalize ψ such that ψ(0) = 1, in which case Λ is a probability measure and

ψ is its characteristic function. For example, if Λ is a normal distribution of the form

(2π/σ2)−d/2e−
σ2∥ω∥2

2 dω, then the corresponding ISPD kernel is the Gaussian exp(−∥t∥2/2σ2).
By applying Bochner’s theorem, one can show that, see, e.g., Fan and Li (2000); Muandet

et al. (2020)

M2(θ) = (2π)−d/2

∫
Rd

E
(
ε(Z; θ) exp(−iω⊤X)

)2
dΛ(ω)
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where Λ is a Fourier transform of the kernel k.

Several commonly studied ICM tests are indeed in a form of nM̂2
n(θ̂) (V-statistic version).

For example, the ICM test of Bierens with exponential weighting function exp(iω⊤x) and

a uniform integral measure can be stated as

ICMn =
n

n2

n∑
j,k=1

ε(zj ; θ̂)ε(zk; θ̂) exp

(
−1

2
∥xj − xk∥2

)
where the kernel is chosen as the Gaussian RBF k(x, x′) = exp

(
−∥x− x′∥22/2σ2

)
, σ = 1.

Another popular ICM test is Escanciano’s PCvMn (Escanciano, 2006a) with a weighting

function of I{ω⊤x ≤ u} and an empirical distribution as the integral measure, its analytic

closed form is:

PCvMn =
n

n2

n∑
j ̸=k

ε(zj ; θ̂)ε(zk; θ̂)

(
1

n

n∑
r=1

B
(0)
jkq

π(d/2)−1

Γ(d2 + 1)

)

where Γ(·) denotes the gamma function, B
(0)
jkq is the complementary angle between (xj−xq)

and xk − xq, and is defined as

B
(0)
jkq =

∣∣∣∣π − arcos

(
(xj − xq)

⊤(xk − xq)

|xj − xq||xk − xq|

)∣∣∣∣
Equation (7) and Bochner’s theorem state that both weighting functions and integral

measures are implicitly determined by the kernel.

2.2.2 Generate ICM Tests, Massively and Cheaply

Constructing ICM tests from weighting functions and integral measures is difficult, as

one needs to perform the integration. Observe that each kernel corresponds to an ICM test,

and the RKHS representation provides a cheap way to massively produce ICM tests by

constructing kernels from existing kernels. To begin with, we first introduce some commonly

used kernels listed in Table 1. For more examples, see, e.g., Muandet et al. (2017); Steinwart

(2001); Steinwart and Christmann (2008).

Table 1: Various characterizations of known kernels
Kernel Function k(x, x′) Domain X Characteristic Shift Invariant ISPD

Gaussian exp
(
−γ∥x− x′∥22

)
, γ > 0 Rd ✓ ✓ ✓

Laplacian exp (−∥x− x′∥1/σ) , σ > 0 Rd ✓ ✓ ✓

Inverse Multiquadric (c2 + ∥x− x′∥22)−γ , c, γ > 0 Rd ✓ ✓ ✓

Exopnential exp(σ⟨x, x′⟩), σ > 0 Compact sets of Rd ✓ ✗ ✓

Matern 21−νΓ−1(ν)
(√

2ν/ρ∥x− x′∥2
)ν

κν

(√
2ν/ρ∥x− x′∥2

)
Rd ✓ ✓ ✓

Infinite Polynomial (1− ⟨x, x′⟩)−α, α > 0 {x ∈ Rd : ∥x∥2 < 1} ✓ ✗ ✓

Notes: In the Matern kernel, Γ(·) is the Gamma function, κν is the modified Bessel function of the second type, ν, ρ

are non-negative parameters. When ν → ∞, it becomes equivalent to the Gaussian kernel, and when ν = 1/2, it

reduces to the Laplacian kernel.

The following lemmas describe ways of constructing new ISPD kernels.
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Lemma 2 Let a ≥ 0, and k, k1 and k2 be ISPD kernels on X. Then ak and k1 + k2 are

also ISPD kernels on X.

This lemma states that the set of ISPD kernels is a convex cone, its proof is trivial and

will not be discussed here.

Lemma 3 A shift variant ISPD kernel, k̃ can be obtained from a shift invariant ISPD

kernel, k, as

k̃(x, x′) = f(x)k(x, x′)f(x′)

where f : X −→ R is a bounded continuous function.

Proof See Sriperumbudur et al. (2010).

This lemma states that one can generate new ISPD kernels through conformal mapping,

i.e., a transformation that preserves angles locally.

The next lemma is based on the fact that all bounded continuous shift-invariant kernels

if they are characteristic, are also ISPD. A measurable and bounded kernel, k is said to be

characteristic if

P −→
∫
X
k(·, x)dP(x)

is injective, that is, P is embedded to a unique element in H(k). The above-mentioned

shift-invariant kernels (i.e., the Gaussian, the Laplacian, the IMQ, and the Matern) are all

characteristic kernels.

Lemma 4 Let k, k1 and k2 be a bounded continuous shift-invariant kernel on Rd. Suppose

k is characteristic and k2 ̸= 0, then k + k1 and k × k2 are characteristic.

Proof See Sriperumbudur et al. (2010).

Escanciano (2009) has shown that ICM tests only have substantial local power against

alternatives in a finite-dimensional space, and there is only one direction with the highest

asymptotic local power. This best direction depends on the weighting function, the inte-

grated measure, the true model, and DGP. Since a kernel embodies the weighting function

and the integral measure, it also affects the directions in which the corresponding ICM test

has substantial power. Hence, different kernels would have different power properties, and

it is desirable to have as many ICM tests as possible.

Choosing a kernel is important. Some kernels will gradually reduce to a constant func-

tion as the dimension d of X increases, making corresponding tests distorting size as well

as losing power in almost all directions. Considering the Bierens’ test, which corresponds

to the Gaussian kernel with Euclidean distance and parameter γ = 1/2. When d is large,

the corresponding kernel matrix Kij (also known as the Gram matrix, see Appendix A for
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details) becomes close to the identity matrix1. Nevertheless, one could “slow down” the

decay rate by changing the parameter inside the Gaussian kernel, we will demonstrate this

point in the simulation exercises.

2.3 Challenges when Using the Simple Statistic

We call the test statistic

nM̂2
n(θ̂) =

n

n(n− 1)

∑
1≤i ̸=j≤n

ε(zi; θ̂)k(xi, xj)ε(zj ; θ̂)

the simple statistic because it simply replaces unknown parts with their empirical coun-

terparts. There are several potential drawbacks to using this simple statistic. First, if the

estimator θ̂ is standard in the sense that Op(∥θ̂ − θ0∥) = Op(1/
√
n), then the distributions

of the test statistic would depend on how θ̂ is estimated. Furthermore, in most literature,

to establish the limiting distribution of nM̂2
n(θ̂) under the null, an asymptotic linear rep-

resentation for
√
n(θ̂ − θ0) is often required, see, e.g., Delgado et al. (2006); Escanciano

(2006a).

Second, since the limiting distribution of nM̂2
n(θ̂) is non-pivotal, a bootstrap procedure is

needed to calculate critical values. However, the presence of θ̂ often requires a case-by-case

complicated parametric bootstrap procedure.

Finally, and perhaps more interestingly, certain ‘non-standard’ estimators θ̂ with slower

than 1/
√
n rate of convergence are ruled out, as in these cases, limn→∞Op(

√
n∥θ̂− θ0∥) →

∞.

To deal with this problem, one could try to find suitable transformations on the kernel

to eliminate the “parameter estimation effect”. Most literature is based on the empirical

process and are adopting two different transformation approaches. The first approach con-

sists of martingale transformation of the empirical process, see, for instance, Delgado and

Stute (2008); Khmaladze (1982, 1993); Koul and Stute (1999). However, the martingale

transformation can be quite complicated even for some conventional econometrics models.

More importantly, this transformation is based on a sequence of iterative regressions, the in-

version of the projection matrix could be unstable, which will ultimately affect the sampling

performance.

The second approach is based on the idea of projecting the weighting function h(X, t)

onto a tangent space of nuisance parameters, see, for example, Bickel et al. (2006); Escan-

ciano and Goh (2014); Neyman (1959); Sant’Anna and Song (2020); Sant’Anna and Song

(2019). This approach is relatively easier to implement and requires weaker conditions than

the Khmaladze transformation. In this study, we extend this projection idea to kernels.

1. Identity matrix for the V-statistic version of the test, and the kernel matrix is close to a zero matrix,

where all elements are zeros, if one uses the U -statistic version.
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3. A Projection Test Statistic and its Asymptotic Results

3.1 The Projection Test Statistic

Let g(z; θ) and θ̄ are defined as before, the simple statistic can be expanded as

nM̂2
n(θ̂) =

n

n(n− 1)

∑
1≤i ̸=j≤n

(
ε(zi; θ0) + g⊤(zi; θ̄)(θ̂ − θ0)

)
k(xi, xj)

(
ε(zj ; θ0) + g⊤(zj ; θ̄)(θ̂ − θ0)

)
= nA1,n(k) + 2

√
nA2,n(k)

√
n(θ̂ − θ0) +

√
n(θ̂ − θ0)

⊤A3,n(k)
√
n(θ̂ − θ0)

where

A1,n(k) =
1

n(n− 1)

∑
1≤i ̸=j≤n

ε(zi; θ0)k(xi, xj)ε(zj ; θ0)

A2,n(k) =
1

n(n− 1)

∑
1≤i ̸=j≤n

ε(zi; θ0)k(xi, xj)g
⊤(zj ; θ̄)

A3,n(k) =

 1

n(n− 1)

∑
1≤i ̸=j≤n

g(zi; θ̄)k(xi, xj)g
⊤(zj ; θ̄)


In order to eliminate the estimation effect

√
n(θ̂ − θ0), we need to find a kp(·, ·) such

that

EA2,n(kp) = E
(
ε(Z; θ0)g(Z

′; θ0)kp(X,X
′) = 0

and

EA3,n(kp) = E
(
g(Z; θ0)kp(X,X

′)g(Z ′; θ0)
⊤
)
= 0

One possibility is

kp(x, x
′) = k(x, x′)− g⊤(z; θ0)Γ

−1
θ0

E(X,Z)

(
g(Z; θ0)k(X,x

′)
)

− g⊤(z′; θ0)Γ
−1
θ0

E(X′,Z′)

(
g(Z ′; θ0)k(X

′, x)
)

+ g⊤(z; θ0)Γ
−1
θ0

E
(
g(Z; θ0)k(X,X

′)g⊤(Z ′; θ0)
)
Γ−1
θ0
g(z′; θ0)

(8)

where Γθ = E
(
g(Z; θ)g⊤(Z; θ)

)
, and

E(X,Z)

(
g(Z; θ0)k(X,x

′)
)
= E

(
g(Z; θ0)k(X,x

′)|X ′ = x′
)

The corresponding test statistic nM̂2
p(θ̂) is specified as:

nM̂2
p(θ̂) =

n

n(n− 1)

∑
1≤i ̸=j≤n

ε(zi; θ̂)k̂p(xi, xj)ε(zj ; θ̂) (9)

where k̂p(·, ·) is the empirical counterpart of kp(·, ·).
In the subsequent contents, we will explain (1) Where does kp(·, ·) come from? (2) What

are the properties of kp(·, ·), and (3) Does

E(X; θ0) = 0 ⇔ E
(
ε(Z; θ0)kp(X,X

′)ε(Z ′; θ0)
)
= 0, Px-a.s.
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hold?

A Projection Interpretation.

In the conventional ICM framework, the canonical way to “swipe out” the estimation

effect is to project the weighting function onto the tangent space of nuisance parameters,

see, for instance, Escanciano and Goh (2014); Sant’Anna and Song (2020); Sant’Anna and

Song (2019). We adopt the same approach to the feature map ϕx(·) of k. Define a projection

operator P that takes a value in H(k) and delivers the projected feature map Pϕx(·):

Pϕx(·) = ϕx(·)− g⊤(z; θ0)Γ
−1
θ0

EXZ (g(Z; θ0)ϕX(·)) (10)

The intuition behind (10) is simple. First, note that Γ−1
θ0

EXZ (g(Z; θ0)ϕX(·)) is the vector

of linear projection coefficients of regressing ϕx(·) on the score function g(z; θ0). Thus,

g⊤(z; θ0)Γ
−1
θ0

EXZ (g(Z; θ0)ϕX(·)) is the best linear predictor of ϕx(·) given g(z; θ0), and

equation (10) is nothing more than the associated projection error, which, by definition, is

orthogonal to g(z; θ0).

Observe that P is a linear operator, it follows the construction of RKHS that Pϕx(·) ∈
H(k). This can be verified by checking its reproducing property (see Appendix C):

⟨Pϕx(·), ϕx′(·)⟩H(k) = Pϕx(x′)

= k(x, x′)− g⊤(z; θ0)Γ
−1
θ0

EXZ

(
g(Z; θ0)k(X,x

′)
) (11)

kp is then constructed from

kp(x, x
′) = ⟨Pϕx(·),Pϕx′(·)⟩H(k) (12)

It can be understood as the “residual square” of ϕx(·).

Properties of Kp.

Note that the operator P is an orthogonal projection operator in the Hilbert space of

L2(R1+d, P(X,Z)) but not necessarily in the RKHS H(k). Thus, in general

⟨ϕx(),Pϕx′(·)⟩H(k) ̸= ⟨Pϕx(),Pϕx′(·)⟩H(k)

and

⟨ϕx(),Pϕx′(·)⟩H(k) ̸= ⟨Pϕx(), ϕx′(·)⟩H(k)

Nevertheless, P is idempotent,

PPϕx(·) = Pϕx(·)− Pg⊤(z; θ0)Γ−1
θ0

EXZ (g(Z; θ0)ϕX(·)) = Pϕx(·)

12



To investigate the positive definiteness of kp(·, ·), it is tantamount to verifying the sign

of ∫
X×X

f(x)kp(x, x
′)f(x′)dxdx′, f ∈ L2

but the above equation can be written as∫
X×X

〈
f(x)Pϕx(·), f(x′)Pϕx′(·)

〉
H(k)

dxdx′

=

〈∫
X
f(x)Pϕx(·)dx,

∫
X
f(x′)Pϕx′(·)dx′

〉
H(k)

=

∥∥∥∥∫
X
f(x)Pϕx(·)dx

∥∥∥∥2
H(k)

≥ 0

where the last equality comes from the independence between x and x′. The Moore–

Aronszajn Theorem states that this positive definite kernel kp(·, ·) is associated with a

unique RKHS H(kp).

Let P1 with P1ϕx(·) = ϕx(·) − Pϕx(·) be another orthogonal projection operator, and

by properties of P1, we have

∥P1ϕx(·)∥2L2(R1+d,P(X,Z))
=
〈
P1ϕx(·),P1ϕx(·)

〉
L2(R1+d,P(X,Z))

=
〈
P1ϕx(·), ϕx(·)

〉
L2(R1+d,P(X,Z))

≤ ∥P1ϕx(·)∥L2(R1+d,P(X,Z))
∥ϕx(·)∥L2(R1+d,P(X,Z))

Thus,

∥P1ϕx(·)∥L2(R1+d,P(X,Z))
≤ ∥ϕx(·)∥L2(R1+d,P(X,Z))

By the isometrically isomorphic relationship between H(k) and L2(R1+d, P(X,Z)), we further

have

∥P1ϕx(·)∥H(k) ≤ ∥ϕx(·)∥H(k) (13)

with equality holds if ϕx(·) ∈ span{g(z; θ0) : z ∈ Z}.
Thus, as long as ϕx(·) /∈ span{g(z; θ0) : z ∈ Z},

∥Pϕx(·)∥H(k) = ∥ϕx(·)− P1ϕx(·)∥H(k) > 0, ∀x ∈ X∥∥∥∥∫
X
f(x)Pϕx(·)dx

∥∥∥∥2
H(k)

>

∥∥∥∥∫
X
f(x)dx inf

x∈X
Pϕx(·)

∥∥∥∥2
H(k)

≥ 0

and kp(·, ·) is an ISPD kernel.

(Almost) Equivalence between E(X; θ0) and E (ε(Z; θ0)kp(X,X
′)ε(Z ′; θ0))

13



Similar to the story presented in Section 2, we show E(X; θ) is almost injective to a con-

ditional moment embedding µ
(p)
θ ∈ H(kp) and E (ε(Z; θ0)kp(X,X

′)ε(Z ′; θ0)) = ∥µ(p)θ0
∥2H(kp)

.

Redefine the operator Cθ as C(p)
θ : H(kp) → R:

C(p)
θ h = EXZ (ε(Z; θ)h(X)) , h ∈ H(kp)

Let ϕ
(p)
x (·) be the feature map associated with kp(·, ·). By the reproducing property, we

have h(x) = ⟨h, ϕ(p)x (·)⟩H(kp) and

C(p)
θ h =

〈
h,EXZ

(
ε(Z; θ)ϕ(p)x (·)

)〉
H(kp)

=
〈
h, µ

(p)
θ

〉
H(kp)

By Riesz’s representer theorem,

|C(p)
θ | = ∥µ(p)θ ∥H(kp)

The following theorem states the almost injectivity between E(X; θ) and µ
(p)
θ :

Theorem 5 For any θ1, θ2 ∈ Θ, assume E(x; θ) is not collinear with g(Z; θ0), then we have

E(X; θ1) = E(X; θ2) if and only if µ
(p)
θ1

= µ
(p)
θ2

. Consequently,

E(X; θ0) = 0 ⇔ ∥µ(p)θ0
∥2H(kp)

= 0 Px-a.s.

Proof See Appendix C.

Finally, by the construction of µ
(p)
θ , it is easy to check that

∥µ(p)θ0
∥2H(kp)

= E
(
ε(Z; θ0)kp(X,X

′)ε(Z ′; θ0)
)

3.2 Asymptotic Null Distribution

One can estimate M2
p(θ0) = ∥µ(p)θ0

∥2H(kp)
by

M̂2
p(θ̂) =

1

n(n− 1)

∑
1≤i ̸=j≤n

ε(zi; θ̂)k̂p(xi, xj)ε(zj ; θ̂)

Consequently, define the test statistic as nM̂2
p(θ̂). In this subsection, we study the

asymptotic properties of nM̂2
p(θ̂) under the null hypothesis.

To derive our theoretical results, we impose additional assumptions:

• (A5). (i) E∥ε(Z; θ0)∥2 < ∞. Let ∇θg(z; θ) exist almost surely in an open neigh-

borhood N (θ0) of θ0. (ii) E∥g(Z; θ0)∥ < ∞ and supθ∈N (θ0)∥∇θg(·, θ)∥ < S(·), with
ES(Z) < ∞, where ∥·∥ denotes either a vector or matrix norm. (iii) ∇θg(z, θ) are

continuous in θ for θ ∈ N (θ0) and uniformly in Z almost everywhere.

14



• (A6). (i) ∥θ̂ − θ0∥ = op(n
−1/4); (ii) Γθ is nonsingular uniformly in θ ∈ Θ◦.

Remark. Assumption A5 contains regularity conditions for ε(z; θ), and these conditions

are similar in, e.g., Delgado et al. (2006); Newey (1985); Robinson (1991). A sufficient

condition for Assumption A6 (i) is nς∥θ̂ − θ0∥ = Op(1) for some ς > 1/4. In addition, we

do not require θ̂ to have an asymptotically linear representation.

Lemma 6 Under the null, we have

k̂p(·, ·) = kp(·, ·) +Op(1/
√
n) +Op(∥θ̂ − θ0∥) (14)

while expanding nM̂2
p(θ̂) around θ0 yields

nM̂2
p(θ̂) =

n

n(n− 1)

∑
i ̸=j

ε(zi; θ0)kp(xi, xj)ε(zj , θ0) +Op(∥θ̂ − θ0∥) +Op(∥θ̂ − θ0∥2)

+Op(1/
√
n)

(15)

Theorem 7 Assume that M2
p(θ) <∞ for all θ ∈ Θ and Assumption A6 (i) hold, under the

null, we have

nM̂2
p(θ̂)

d→
∞∑
k=1

τ
(p)
k (W 2

k − 1) (16)

where Wk ∼ N(0, 1), {τ (p)k } are eigenvalues of the operator A defined as (Aψ)(v) =∫
f(v, v′)ψ(v′)dPv(v

′) for non-zero ψ, v = (x, y), and f(v, v′) = ε(z; θ0)kp(x, x
′)ε(z′; θ0)

Proof See, Serfling (1980).

3.3 Asymptotic Power

We now study the asymptotic distribution of nM̂2
p(θ̂) under fixed alternative and a

sequence of local alternatives converging to null at a parametric rate n−1/2.

We first consider the fixed alternative hypothesis. Observe that2

√
nM̂2

p(θ̂) =

√
n

n(n− 1)

∑
i ̸=j

ε(zi; θ0)kp(xi, xj)ε(zj , θ0) +Op(∥θ̂ − θ0∥) +Op(∥θ̂ − θ0∥2) +Op(1/
√
n)

=

√
n

n(n− 1)

∑
i ̸=j

ε(zi; θ0)kp(xi, xj)ε(zj , θ0) +Op(∥θ̂ − θ0∥) +Op(1/
√
n)

2. Since both A
(p)
1,n and A

(p)
2,n are non-degenerate, and A

(p)
1,n, A

(p)
2,n = OP (1/

√
n). A

(p)
1,n and A

(p)
2,n are defined

in the proof of Lemma 6.
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Theorem 8 Assume that M2
p(θ) < ∞ for all θ ∈ Θ, and θ̂

p→ θ1 ∈ Θ. Under the fixed

alternative, we have
√
n
(
M̂2

p(θ̂)−M2
p(θ1)

)
d→ N(0, σ2θ1,p) (17)

where

σ2θ1,p = 4Var(X,Z)

(
E(X′,Z′)

(
ε(Z; θ1)kp(X,X

′)ε(Z ′; θ1)
))

Proof See Serfling (1980).

It is readily to see that for large n and fixed critical value cα, the test power can be

approximated by

PH1(nM̂
2
p (θ̂) > cα) ≈ Φ

(√
nM2

P (θ1)

σθ1,p
− cα√

nσθ1,p

)
where Φ denotes the cumulative distribution function of the standard normal distribution.

Assume that n is sufficiently large, in
√
nM2

P (θ1)/σθ1,p − cα/
√
nσθ1,p, we observe that

the second term cα/
√
nσθ1,p = O(n−1/2) going to 0 as n → ∞, while the first term

√
nM2

P (θ1)/σθ1,p = O(n1/2), dominating the second. Thus, the best kernel that maximizes

the test power is given by

k∗ = arg sup
k∈K

√
nM2

P (θ1)

σθ1,p

where K is a proper kernel space, e.g., K = {exp(−γ∥x− x′∥), γ > 0}.
A heuristic way to estimate k∗ is to divide the sample {(xi, zi), i = 1, . . . , n} into two

disjoint training and test sets, and use the training set to compute (M̂p(θ̂)/σ̂θ1,p)(k), which

can be maximized by choosing the kernel parameter (e.g., in Gaussian kernel, the kernel

parameter is γ). We denote the kernel that maximize (M̂p(θ̂)/σ̂θ1,p)(k) as k̂
∗. We then, use

k̂∗ and perform testing in the test set.

A similar idea has been discussed in the machine learning literature, where the test

of interest is the equality of two samples, see, e.g., Gretton et al. (2012). Nevertheless,

extending the idea to our content is not trivial. Specifically, there are several key questions

needed to be answered for validating this heuristic procedure:

• Does k̂∗
p→ k∗, and if so, what is the convergence rate.

• Does (M̂p(θ̂)/σ̂θ1,p)(k̂
∗)

p→ (M2
p (θ1)/σθ1,p)(k

∗), and if so, what is the convergence rate.

We leave these questions in future research.

Remark. On the other hand, Theorem 8 indicates that our test statistic might not

be consistent against all fixed alternative hypotheses if ε(Z; θ0) is collinear to the function

g(Z; θ0). However, given the nonlinear nature of our model, we do not think of this type of

alternative being relevant.
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We now proceed to consider the asymptotic local power properties. To this end, we

study the asymptotic distribution of nM̂2
p(θ̂) under a certain sequence of Pitman-type local

alternatives converging to null at a parametric rate:

H1,n : E (Y |X = x) = M(x; θ0) +
R(x)√
n

(18)

where the random variable R(X) is PX -integrable and satisfies P (R(X) = 0) < 1.

Theorem 9 Assume that M2
p(θ) <∞ for all θ ∈ Θ. Under H1,n, we have

nM̂2
n(θ̂)

d→
∞∑
k=1

τ
(p)
k (W 2

k − 1) + 2N
(
0, 4VarX,Z

(
EX′,Z′ε(Z; θ0)kp(X,X

′)R(X ′)
))

+ E
(
R(X)kp(X,X

′)R(X ′)
) (19)

where
∑∞

k=1 τ
(p)
k (W 2

k − 1) is defined in Theorem 7.

Proof See Appendix C.

Remark. A pathological situation in which our test will only have trivial local power

against such alternatives is when R(X) is a linear combination of g(Z; θ0), i.e., R(x) =

ν⊤g(Z; θ0) a.s. for some nonzero vector ν. In such a case, the limiting distribution of

nM̂2
p(θ̂) under H0 and H1,n is the same so that H1,n can not be detected. However, such a

specific class of local alternatives is of very limited practical interest.

The following lemma states that the proposed test only has non-trivial local power in a

finite-dimensional space, and there is only one direction with the highest asymptotic local

power. Although this lemma is essentially Theorem 1 of Escanciano (2009), it provides a

clear viewpoint that highlights the importance of a kernel.

To begin with, let Tk be an integral operator defined as

Tkf(x) =

∫
X
k(x, x′)f(x′)dPX(x′)

Mercer’s theorem states that one can characterize a kernel kp(·, ·) as:

kp(x, x
′) =

∑
j≥1

λjej(x)ej(x
′)

where the convergence is absolute and uniform, and {λj}j≥1, {ej(·)}j≥1 are eigenvalues and

eigenfunctions of the operator Tk, respectively. λ1 > λ2 > · · · and λj → 0 as j → ∞. Since

{ej(·)}j≥1 are also basis of the space L2(Rd, PX), one can write R(x) =
∑

s≥1 αses(x), αs =

⟨R, es⟩L2(Rd,PX) ∈ R.
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Lemma 10 Under local alternatives, let

M2
p(θ0) = E

((
ε(Z; θ0) +

R(X)√
n

)
kp(X,X

′)

(
ε(Z ′; θ0) +

R(X ′)√
n

))
we have

M2
p(θ0) = E

(
ε(Z; θ0)kp(X,X

′)ε(Z ′; θ0)
)
+ λj

α2
j

n
+ 2λjE (ε(Z; θ0)ej(X))

αj√
n

(20)

Proof See Appendix C.

Immediately, we conclude that if αj ̸= 0 but {αs}s ̸=j = 0, then when j = 1, i.e., R(x) =

α1e1(x), the proposed test have highest asymptotic local power. The local power decreases

when j increases, and when j → ∞ one can only have trivial power. Nevertheless, for any

fixed direction, e.g., R(x) = αses(x), we can change the value of λs (equivalently, change

the kernel) to increase the local power.

4. A Multiplier Bootstrap Procedure

Our test statistic nM̂2
p(θ̂) is non-pivotal, in this section, we propose a simple-to-use

multiplier bootstrap procedure to approximate the null distribution. Its implementation is

listed below:

1. Generate a sequence of i.i.d random variables {vi : i = 1, 2, . . . , n} with mean zero and

variance one; e.g., Rademacher random variable, standard normal random variable,

or Bernoulli random variable with P (v = 1 − κ) = κ/
√
5 and P (v = κ) = 1 − κ/

√
5,

where κ = (
√
5 + 1)/2 (Mammen, 1993).

2. Compute (
nM̂2,∗

p (θ̂)
)
b
=

1

n− 1

∑
i ̸=j

ε(zi; θ̂)vik̂p(xi, xj)ε(zj ; θ̂)vj

3. Repeat steps 1 and 2 B times, and collect
{(
nM̂2,∗

p (θ̂)
)
b
, b = 1, 2 . . . , B

}
4. Define a confidence level α, obtain the (1−α)-th quantile of

{(
nM̂2,∗

p (θ̂)
)
b
, b = 1, 2 . . . , B

}
,

c∗n,α.

5. Reject the null if nM̂2
p(θ̂) > c∗n,α, and fail to reject otherwise.

The multiplier bootstrapped test statistic nM̂2,∗
p (θ̂) has several attractive properties.

First, it does not require computing new parameter estimates at each bootstrap draw,

reducing the computational intensity of the proposed procedure. Second, due to the em-

ployment of the projection, its implementation does not require using estimators that admit
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an asymptotic linear representation. These computational conveniences are important when

the dimension d is high.

The next theorem establishes the asymptotic validity of the proposed multiplier boot-

strap procedure.

Theorem 11 Assume that M2
p(θ) < ∞ for all θ ∈ Θ. Then, we have nM̂2,∗

p (θ̂)
d,∗→∑∞

k=1 τ
(p)
k (W 2

k − 1), with probability one under the bootstrap law. Here
∑∞

k=1 τ
(p)
k (W 2

k − 1)

is defined as the same in Theorem 7, and
d,∗→ denotes weak convergence under the bootstrap

law, i.e., conditional on the original sample {zi, xi : i = 1, 2, . . . , n}.

Proof See Appendix C.

Theorem 11 states that the bootstrap statistic nM̂2,∗
p (θ̂) converges to the null distribution

of nM̂2
p(θ̂) conditional on the original sample under H0, H1 and H1,n. This fact is what

allows the proposed procedure to work.

5. A Minimum Distance Estimator

Based on the U-statistic expression derived in Section 2, we present a minimum distance

estimator in this section. It is known that when the number of the arbitrarily chosen

instruments is finite, the GMM estimation procedure could render inconsistent estimates due

to an identification problem, see, e.g., Domı́nguez and Lobato (2004) for various examples.

Integrated conditional moment, on the other hand, introduces infinitely many instruments,

and therefore, does not arise the identification issue. Domı́nguez and Lobato (2004) is the

first in the literature to introduce a consistent estimation procedure based on the ICM

framework, their estimator reads as,

θ̂ = argmin
θ∈Θ

1

n3

n∑
j=1

(
n∑

i=1

ε(zi; θ)I{xi ≤ xj}

)2

This estimator corresponds to an indicator weighting function I{x ≤ u}, and suffers from

the curse of dimensionality due to data sparseness.

The representation of ICM statistics in the RKHS provides a natural channel to develop

a minimum distance type estimator:

θ̂ = argmin
θ∈Θ

1

n(n− 1)

∑
i ̸=j

ε(zi; θ)k(xi, xj)ε(zj ; θ) (21)

The objective function R̂U (θ) can be rewritten as

R̂U (θ) = ε(z; θ)⊤WUε(z; θ)
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where WU ∈ Rn×n is a symmetric weight matrix that depends on the kernel matrix K with

Ki,j = k(xi, xj). Here WU = (K − diag(K11, . . . ,Knn)) /(n(n− 1)), where diag(a1, . . . , an)

denotes an n× n diagonal matrix whose diagonal elements are a1, . . . , an.

Although using the objective function R̂U (θ), one could obtain a minimum-variance

unbiased estimator, the weight matrix WU , unfortunately, is indefinite, since trace(WU ) =∑n
i=1ϖi = 0, where {ϖi; i = 1, . . . , n} are the eigenvalues of WU . Thus, we conclude that

there exist both positive and negative eigenvalues.

We, therefore, focus on the V-statistic version of this estimator:

θ̂ = argmin
θ∈Θ

1

n2

n∑
i,j=1

ε(zi; θ)k(xi, xj)ε(zj ; θ) (22)

whose objective function R̂V (θ) can be written as

R̂V (θ) = ε(z; θ)⊤WV ε(z; θ)

with WV = K/n2.

Let Rk(θ) = E (fθ(V, V
′)), where fθ(v, v

′) = ε(z; θ)k(x, x′)ε(z′; θ) with v = (x, z), and

denote ∥·∥F as the Frobenius norm. The following theorems establish the asymptotic prop-

erties of this estimator.

Theorem 12 Assume that E
(
|Y |2 <∞

)
, E
(
supθ∈Θ|M(X; θ)|2

)
< ∞, Θ is compact and

convex, Rk(θ) is uniquely minimized at θ0 ∈ Θ◦, and Assumption A4 holds, then

θ̂
p→ θ0

Proof See Appendix C.

Theorem 13 Suppose that M(X; θ) is twice continuously differentiable about θ, Θ is com-

pact, H = E
(
∇2

θfθ0(V, V
′)
)
is non-singular, E

(
|Y |2 <∞

)
, E

(
supθ∈Θ|M(X; θ)|2

)
< ∞,

E
(
supθ∈Θ∥∇θM(X; θ)∥22

)
< ∞, E

(
supθ∈Θ∥∇2

θM(X; θ)∥2F
)
< ∞, Rk(θ) is uniquely mini-

mized at θ0 ∈ Θ◦, and Assumption A4 holds, then

√
n(θ̂ − θ0)

d→ N(0,ΣV )

where

ΣV = 4H−1VarV
(
E2
V ′(∇θfθ0(V, V

′))
)
H−1

Proof See Appendix C.

In general, the estimator given by (22) is not efficient. An efficient estimator based on the

infinite number of moment conditions can be constructed following the ideas of Carrasco

and Florens (2000). For regularized and infinite dimensional estimators based on R̂U(V )(θ),

see Zhang et al. (2020).
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6. Monte Carlo Studies

This section conducts a sequence of Monte Carlo simulations to evaluate the finite sam-

ple performance of the kernel-based tests. The running data-generating processes (DGPs)

are linear models, for additional simulation exercises, we refer readers to Appendix D. Nev-

ertheless, before specifying DGPs, first observe that for any θ ∈ Θ, we have

E
[
ε(Z; θ)kp(X,X

′)ε(Z ′; θ)
]
= E

[
εp(Z; θ)k(X,X

′)εp(Z
′; θ)

]
(23)

where

εp(z; θ) = ε(z; θ)− g⊤(z; θ)Γ−1
θ0

E (g(Z; θ)ε(Z; θ))

is the projection residual of ε(z; θ). Its verification can be found in Appendix C. This

representation greatly simplifies computation, as

nM̂2
p(θ̂) =

1

n− 1

∑
i ̸=j

ε̂p(zi; θ̂)k(xi, xj)ε̂p(zj ; θ̂)

and

nM̂2,∗
p (θ̂) =

1

n− 1

∑
i ̸=j

ε̂p(zi; θ̂)vik(xi, xj)ε̂p(zj ; θ̂)vj

where

ε̂p(zi; θ̂) = ε(zi; θ̂)− g⊤(zi)Γ
−1

n,θ̂

(
1

n

n∑
s=1

g(zs; θ̂)ε(zs; θ̂)

)
and Γn,θ̂ is the empirical counterpart of Γθ0 .

6.1 Data Generating Processes

We consider the following DGPs:

• DGP(m): Yi = β0 +
∑m

j=1 βjXji + σ
(m)
i εi.

• DGP-LOCAL(m): Yi = β0 +
∑m

j=1 βjXji + n−1/2
∑m

j=1 βjX
2
ji + σ

(m)
i εi.

DGP(m) specifies m covariates and is used to evaluate the size performance of proposed

tests. DGP-LOCAL(m) is used to evaluate the local powers of the corresponding null DGPs.

We allow for conditional heteroskedasticity in all models and generate the covariates

and heteroskedasticity as follows.

In DGP(m) and DGP-LOCAL(m),

• When m = 2, X1, X2 ∼ N(0, 1), and σ(2) =
(
0.1 +X2

1 +X2
2

)1/2
.

• When m = 5, Xj ∼ U(0, j) for j = 1, 2, 3, Xj ∼ N(0, (j − 3)2) for j = 4, 5. σ(5) =(
0.1 +

∑3
j=1Xj +

∑5
j=4X

2
j

)1/2
.
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• When m = 10, Xj ∼ U(0, j) for j = 1, . . . , 5, Xj ∼ N(0, (j − 5)2) for j = 6, . . . , 10.

σ(10) =
(
0.1 +

∑5
j=1Xj +

∑10
j=5X

2
j

)1/2
.

• When m = 20, Xj ∼ U(0, j) for j = 1, . . . , 10, Xj ∼ N(0, (j−10)2) for j = 11, . . . , 20.

σ(20) =
(
0.1 +

∑10
j=1Xj +

∑20
j=11X

2
j

)1/2
.

In call cases, we set εi ∼ N(0, 1), and set βj ’s to be 1.

6.2 Test Statistics and Simulation Results

From the discussion of asymptotic power properties, it should be clear now that the

choice of a kernel is important for ICM testing. Nevertheless, finding a case-dependent

optimal kernel is challenging. In this subsection, we provide a heuristic algorithm for tunning

the parameter of a Gaussian kernel k(x, x′) = exp(−γ∥x−x′∥22), γ > 0. Note that we are not

claiming such an algorithm would lead to an optimal testing statistic. Rather, we believe

that this heuristic algorithm would not deliver a bad test (in the sense of small power) with

greater probability.

The Gaussian kernel is the default kernel in many kernel-based algorithms. Conven-

tional wisdom suggests that ‘Gaussian kernels tend to yield good performance under general

smoothness assumptions and should be considered especially if no additional knowledge of

the data is available’ (Smola et al., 1998). A Gaussian kernel takes the form of a normal

distribution and is smooth. The tuning parameter γ determines how well this kernel fits the

data X, here X is a n × d matrix consisting of conditional variables. Fixing an input data

x′, a large γ would lead to an over-fitting scenario since large weight would be concentrated

around x′, while points that are far away from x′ would have a kernel value that decay to

zero exponentially. A small γ corresponds to an under-fitting scenario, as points would have

kernel values close to one. These two cases are essentially the same thing: the resulting

kernel values concentrate around one point (zero or one), making a test powerless.

The desired parameter γ would ‘spread’ the kernel values in the range (0, 1], one nature

method is to normalize the data using the second-moment information of the input matrix

X. We propose to perform a principal component analysis (PCA) for X, and set γ = 1/(2ζ1),

where ζ1 is the largest principal value. The idea is simple: In high-dimensional cases, the

norm ∥x− x′∥22 =
∑d

s=1|xs − x′s|2 are more likely to make kernel values concentrate around

zero than one, and the higher the variance of the data, the higher the probability of occurring

such concentration. By setting γ = 1/(2ζ1), one could avoid such a phenomenon.

We consider five kernels in simulation studies:

• Guassian Kernel, k1(x, x
′) = exp(−(1/ζ1)∥x− x′∥22).

• Inverse Multiquadric (IMQ) Kernel, k2(x, x
′) =

(
1 + ∥x− x′∥22

)−1.5
.

• Gaussian+IMQ Kernel, k3(x, x
′) = k1(x, x

′) +
(
1 + ∥x− x′∥22

)−0.5
.
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• Shift Variant Kernel, k4(x, x
′) = (2 + sin(4∥x∥2))k1(x, x′)(2 + sin(4∥x′∥2))

• Local Periodic Kernel, k5(x, x
′) = (2 + sin(0.1∥x− x′∥22))k1(x, x′).

The Gaussian+IMQ kernel, the Shift Variant kernel, and the Local Periodic kernel are

constructed as results of Lemmas 2, 3 and 4, respectively.

We report the simulation results in Table 2. The nominal significance levels are given

by 0.01, 0.05, and 0.1, while the sample sizes range from N = 100, N = 200 to N = 400.

For each experiment, i.e., each DGP and sample size, we run 1000 simulations. For each

round of the simulation, the bootstrap procedure repeats 500 times to estimate the critical

values. The parameters βj ’s are estimated by the ordinary least squares.

Table 2: Simulation Results, Five Kernels
N=100 0.1 0.05 0.01

DGP Gaussian IMQ Gaussian+IMQ Shift Variant Local Periodic Gaussian IMQ Gaussian+IMQ Shift Variant Local Periodic Gaussian IMQ Gaussian+IMQ Shift Variant Local Periodic

DGP(2) 0.113 0.124 0.113 0.116 0.118 0.068 0.063 0.065 0.065 0.065 0.011 0.016 0.017 0.015 0.016

DGP(5) 0.112 0.109 0.107 0.101 0.102 0.054 0.057 0.059 0.051 0.059 0.009 0.013 0.017 0.01 0.014

DGP(10) 0.109 0.117 0.116 0.109 0.109 0.055 0.057 0.062 0.054 0.059 0.015 0.007 0.02 0.02 0.018

DGP(20) 0.081 0.081 0.082 0.102 0.11 0.053 0.047 0.047 0.064 0.07 0.016 0.011 0.02 0.02 0.019

DGP-LOCAL(2) 0.247 0.205 0.213 0.255 0.238 0.17 0.129 0.132 0.179 0.155 0.057 0.045 0.04 0.052 0.045

DGP-LOCAL(5) 0.329 0.293 0.322 0.297 0.348 0.247 0.205 0.24 0.21 0.233 0.098 0.086 0.102 0.064 0.101

DGP-LOCAL(10) 0.963 0.907 0.965 0.939 0.948 0.938 0.86 0.946 0.888 0.923 0.86 0.718 0.849 0.796 0.821

DGP-LOCAL(20) 0.999 1 1 1 1 0.999 1 1 0.998 1 0.999 1 0.998 0.992 0.999

N=200 0.1 0.05 0.01

DGP Gaussian IMQ Gaussian+IMQ Shift Variant Local Periodic Gaussian IMQ Gaussian+IMQ Shift Variant Local Periodic Gaussian IMQ Gaussian+IMQ Shift Variant Local Periodic

DGP(2) 0.111 0.113 0.111 0.109 0.123 0.053 0.059 0.056 0.046 0.065 0.007 0.013 0.009 0.011 0.013

DGP(5) 0.101 0.127 0.103 0.105 0.111 0.05 0.062 0.046 0.058 0.064 0.01 0.01 0.01 0.012 0.009

DGP(10) 0.099 0.112 0.097 0.119 0.154 0.054 0.058 0.044 0.069 0.091 0.012 0.016 0.011 0.019 0.023

DGP(20) 0.108 0.093 0.109 0.116 0.112 0.055 0.05 0.059 0.061 0.062 0.013 0.012 0.015 0.015 0.015

DGP-LOCAL(2) 0.234 0.228 0.212 0.234 0.239 0.149 0.134 0.137 0.153 0.146 0.045 0.045 0.047 0.052 0.038

DGP-LOCAL(5) 0.347 0.284 0.352 0.314 0.353 0.261 0.178 0.272 0.218 0.264 0.108 0.065 0.119 0.085 0.115

DGP-LOCAL(10) 0.972 0.931 0.977 0.962 0.977 0.958 0.903 0.958 0.933 0.953 0.891 0.778 0.878 0.81 0.855

DGP-LOCAL(20) 1 1 1 1 1 1 1 1 1 1 1 1 1 0.999 1

N=400 0.1 0.05 0.01

DGP Gaussian IMQ Gaussian+IMQ Shift Variant Local Periodic Gaussian IMQ Gaussian+IMQ Shift Variant Local Periodic Gaussian IMQ Gaussian+IMQ Shift Variant Local Periodic

DGP(2) 0.101 0.119 0.099 0.098 0.126 0.051 0.066 0.044 0.047 0.066 0.013 0.007 0.009 0.01 0.022

DGP(5) 0.1 0.098 0.102 0.105 0.119 0.051 0.057 0.05 0.051 0.061 0.011 0.008 0.016 0.013 0.011

DGP(10) 0.102 0.124 0.106 0.118 0.094 0.049 0.062 0.061 0.064 0.051 0.014 0.013 0.015 0.019 0.012

DGP(20) 0.12 0.095 0.118 0.102 0.109 0.068 0.051 0.054 0.059 0.058 0.013 0.011 0.009 0.015 0.011

DGP-LOCAL(2) 0.214 0.193 0.205 0.227 0.225 0.137 0.119 0.117 0.152 0.145 0.05 0.04 0.04 0.044 0.057

DGP-LOCAL(5) 0.338 0.294 0.353 0.3 0.365 0.239 0.192 0.236 0.208 0.278 0.103 0.068 0.091 0.072 0.114

DGP-LOCAL(10) 0.981 0.955 0.988 0.959 0.977 0.97 0.926 0.974 0.933 0.959 0.906 0.816 0.905 0.824 0.892

DGP-LOCAL(20) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We first analyze the size of the proposed tests. From the results of DGP (m),m =

2, 5, 10, 20, we find that the actual empirical sizes of all the proposed tests are close to their

nominal sizes, even when the sample size is as small as 100 and the dimension is as high

as 20. Results of DGP -LOCAL(m),m = 2, 5, 10, 20 confirm that all proposed tests have

non-trivial local power, the power is especially high when tests are facing high-dimensional

models. We want to emphasize that the size, as well as the power of conventional CMR

tests, often diminish rapidly to zero as dimension increases, and the degeneracy of levels

or powers does not improve when sample size increases. Lastly, we want to emphasize

that different kernels (different test statistics) have different power against different models.

Each test necessarily exploits certain features of the data-generating process at the expense

of others, and complementarities between tests can easily arise.

To further illustrate our intuition on γ, we propose a parallel set of DGPs and focus on

Bierens’ test statistic, which is a V -statistic associated with a Gaussian kernel with tuning
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parameter γ = 1/2:

Tn,v =
1

n

n∑
j,k=1

ε(zj ; θ̂)ε(zk; θ̂) exp

(
−1

2
∥xj − xk∥2

)

its U-statistic version is

Tn,u =
1

n− 1

∑
j ̸=k

ε(zj ; θ̂)ε(zk; θ̂) exp

(
−1

2
∥xj − xk∥2

)

The set of parallel DGPs are identical to previous ones (and denoted as DGP(m)* and

DGP-LOCAL(m)*), except in the following areas,

• When m = 2, X1, X2 ∼ N(0, 10), and σ(2) =
(
0.1 +X2

1 +X2
2

)1/2
.

• When m = 5, Xj ∼ U(0, 10 ∗ j) for j = 1, 2, 3, Xj ∼ N(0, (10 ∗ (j − 3))2) for j = 4, 5.

σ(5) =
(
0.1 +

∑3
j=1Xj +

∑5
j=4X

2
j

)1/2
.

• Whenm = 10, Xj ∼ U(0, 1+0.1∗(j−1)) for j = 1, . . . , 5, Xj ∼ N(0, (1+0.1∗(j−5))2)

for j = 6, . . . , 10. σ(10) =
(
0.1 +

∑5
j=1Xj +

∑10
j=5X

2
j

)1/2
.

• When m = 20, Xj ∼ U(0, 1 + 0.1 ∗ (j − 1)) for j = 1, . . . , 10, Xj ∼ N(0, (1 + 0.1 ∗
(j − 11))2) for j = 11, . . . , 15, Xj ∼ N(1, (1 + 0.1 ∗ (j − 15))2) for j = 15, . . . , 20.

σ(20) =
(
0.1 +

∑10
j=1Xj +

∑20
j=11X

2
j

)1/2
.

In a nutshell, this set of parallel DGPs only differs in the variances of conditional variables

such that in low-dimensional cases (i.e., DGP(2)*, DGP(5)*, DGP-LOCAL(2)*, DGP-

LOCAL(5)*), the largest principal value ζ1 > 2, and in high-dimensional cases (i.e., rest

of the DGPs), the largest principal value ζ1 ∈ (1, 2.25). While in contrast, in the original

DGPs, we have ζ1 ∈ (1, 2.25) for low-dimensional cases and ζ1 > 2 for high-dimensional

cases.

Tables 3-5 present the results. We also study the performance of a Gaussian kernel with

tuning parameter γ = 1/(2ζ1) under these parallel DGPs, the results are shown in Table 6.

We draw the following remarks:

• Overall, V -Statistics are inferior to U -statistics, this is especially true when conditional

variables have high variance, i.e., the parallel DGPs. In extreme cases, the V -Statistic

test sizes are completely wrong, losing almost all the power against alternatives. In

the contrast, U -Statistic performs well when the variance of conditional variables

matches the tuning parameter (e.g., low-dimensional cases in the original DGPs and

high-dimensional cases in the parallel DGPs). We conjecture that this is because the

V -statistic is a biased statistic, and a high dimension increases the bias level.
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• Tuning parameter works as conjectured. High-dimensional cases in the parallel DGPs

have an accurate size and good power against local alternatives, but these cases per-

form poorly under the original DGPs. A reverse pattern holds true for low-dimensional

cases under parallel and original cases.

• Model complexity (i.e., dimension) is important. Observe that even though in the par-

allel DGPs, low-dimensional cases are mismatched by its tuning parameter, DGP(2)*

has a more accurate test size compared to DGP(5)*, and DGP-LOCAL(2)* has more

power than DGP-LOCAL(5)*. These patterns suggest model complexity plays an

important role in a test’s power properties.

Table 3: Bierens’ Test with significant level α = 0.1

α = 0.1 U-Statistic V-Statistic

N=100 N=200 N=400 N=100 N=200 N=400

DGP(2) 0.116 0.126 0.105 0.148 0.111 0.124

DGP(5) 0.12 0.11 0.095 0.1 0.081 0.091

DGP(10) 0.127 0.127 0.117 0 0 0

DGP(20) 0.188 0.175 0.141 0.699 0 0

DGP-LOCAL(2) 0.226 0.222 0.2 0.224 0.209 0.212

DGP-LOCAL(5) 0.289 0.312 0.277 0.227 0.264 0.294

DGP-LOCAL(10) 0.378 0.398 0.371 0 0 0

DGP-LOCAL(20) 0.232 0.207 0.199 0.694 0 0

α = 0.1 U-Statistic V-Statistic

N=100 N=200 N=400 N=100 N=200 N=400

DGP(2)* 0.104 0.11 0.097 0.001 0 0

DGP(5)* 0.092 0.126 0.158 0 0 0

DGP(10)* 0.134 0.116 0.116 0.027 0.01 0.022

DGP(20)* 0.129 0.117 0.113 0.731 0 0

DGP-LOCAL(2)* 0.996 1 1 0.121 0.616 0.958

DGP-LOCAL(5)* 0.41 0.581 0.713 0 0 0

DGP-LOCAL(10)* 0.919 0.954 0.973 0.692 0.795 0.881

DGP-LOCAL(20)* 0.505 0.589 0.611 0.812 0 0

7. An Empirical Illustration

In this section, we use the proposed method to examine the validity of instrument

variables used in Angrist and Krueger (1991). This influential paper investigates does com-

pulsory school attendance affect schooling and earnings. The authors exploits the variation

induced by compulsory school laws in the US, and show that these variations affect a stu-

dent’s schooling attainment. When investigating how schooling would affect the earnings,

the author use quarter of birth (QoB) as instrument variables. They argue that QoB should

not affect income directly, nor does it correlate with ability, motivation or family incomes,

etc. Furthermore, QoB is correlated with educational attainment via the compulsory school

laws. To support such claim, the authors present several tabulations to demonstrate that
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Table 4: Bierens’ Test with significant level α = 0.05

α = 0.05 U-Statistic V-Statistic

N=100 N=200 N=400 N=100 N=200 N=400

DGP(2) 0.062 0.065 0.056 0.071 0.049 0.065

DGP(5) 0.068 0.056 0.043 0.034 0.037 0.04

DGP(10) 0.034 0.033 0.036 0 0 0

DGP(20) 0.137 0.085 0.035 0.01 0 0

DGP-LOCAL(2) 0.144 0.142 0.12 0.122 0.121 0.15

DGP-LOCAL(5) 0.196 0.215 0.185 0.113 0.166 0.168

DGP-LOCAL(10) 0.168 0.214 0.224 0 0 0

DGP-LOCAL(20) 0.152 0.083 0.041 0.014 0 0

α = 0.05 U-Statistic V-Statistic

N=100 N=200 N=400 N=100 N=200 N=400

DGP(2)* 0.041 0.057 0.044 0 0 0

DGP(5)* 0.002 0.001 0.009 0 0 0

DGP(10)* 0.056 0.058 0.069 0.001 0 0.003

DGP(20)* 0.074 0.056 0.044 0.009 0 0

DGP-LOCAL(2)* 0.988 0.999 1 0.021 0.285 0.855

DGP-LOCAL(5)* 0.016 0.039 0.183 0 0 0

DGP-LOCAL(10)* 0.88 0.922 0.955 0.335 0.583 0.749

DGP-LOCAL(20)* 0.403 0.453 0.492 0.018 0 0

Table 5: Bierens’ Test with significant level α = 0.01

α = 0.01 U-Statistic V-Statistic

N=100 N=200 N=400 N=100 N=200 N=400

DGP(2) 0.011 0.014 0.01 0.012 0.011 0.011

DGP(5) 0.016 0.013 0.007 0.005 0.007 0.006

DGP(10) 0 0 0.006 0 0 0

DGP(20) 0.044 0.018 0.011 0 0 0

DGP-LOCAL(2) 0.048 0.05 0.033 0.028 0.034 0.047

DGP-LOCAL(5) 0.074 0.075 0.076 0.025 0.039 0.047

DGP-LOCAL(10) 0.012 0.036 0.055 0 0 0

DGP-LOCAL(20) 0.042 0.021 0.01 0 0 0

α = 0.01 U-Statistic V-Statistic

N=100 N=200 N=400 N=100 N=200 N=400

DGP(2)* 0.003 0.007 0.006 0 0 0

DGP(5)* 0 0 0 0 0 0

DGP(10)* 0.012 0.01 0.012 0 0 0

DGP(20)* 0.011 0.007 0.006 0 0 0

DGP-LOCAL(2)* 0.874 0.984 1 0 0.018 0.428

DGP-LOCAL(5)* 0 0 0.005 0 0 0

DGP-LOCAL(10)* 0.706 0.836 0.881 0.039 0.181 0.417

DGP-LOCAL(20)* 0.193 0.205 0.263 0 0 0

compulsory attendance laws are part of the mechanism generating a relationship between

QoB and educational attainment. The exclusion restriction is examined by performing an

over-identification test.
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Table 6: Gaussian Kernel with γ = 1/(2ζ1) Under Parallel DGPs

α = 0.1 α = 0.05 α = 0.01

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

DGP(2)* 0.141 0.106 0.104 0.067 0.054 0.054 0.022 0.013 0.015

DGP(5)* 0.129 0.094 0.116 0.072 0.044 0.06 0.016 0.015 0.015

DGP(10)* 0.107 0.101 0.098 0.052 0.058 0.052 0.016 0.014 0.009

DGP(20)* 0.089 0.093 0.116 0.062 0.043 0.055 0.019 0.012 0.013

DGP-LOCAL(2)* 1 1 1 1 1 1 1 1 1

DGP-LOCAL(5)* 1 1 1 1 1 1 1 1 1

DGP-LOCAL(10)* 0.979 0.992 0.992 0.965 0.977 0.988 0.903 0.935 0.958

DGP-LOCAL(20)* 0.788 0.871 0.891 0.731 0.802 0.836 0.592 0.651 0.695

However, there are other channels (rather than the compulsory schooling laws) that

QoB could correlate with school attainment, and hence undermining the validity of QoB as

instruments:

• QoB could affect a student’s performance in school;

• There are differences in the physical and mental health of individuals bore at different

times of the year;

• Regional patterns in QoB;

• Redshirting, i.e., parents voluntarily delaying their children’s enrollment.

See Aliprantis (2007); Bound et al. (1995) for detailed discussions.

We examine one specification of Angrist and Krueger (1991). Specifically, column (2)

of Table IV in their paper. The 2SLS model investigates how education attainment affects

earnings of men who were born in 1920-1929. The model reads as:

ln(Wi) =
9∑

c=1

Yicξc + ρEi + µi

Ei =
9∑

c=1

Yicδc +
10∑
c=1

3∑
j=1

YicQijθij + ei

(24)

where Wi, Ei are weakly wage and the education of the ith individual, respectively. Qij is a

dummy variable indicating whether the individual was born in quarter j, j = 1, 2, 3, and Yic

is a dummy variable indicating whether the individual was born in year c, c = 1, . . . , 10. The

coefficient ρ is the return to education. In this specification, the dimension of exogenous

variables is d = 39. The first row of Table 7 reports p-values of the specification tests against

model (24) using five kernels mentioned in the previous section. All the tests overwhelmingly

reject the null that the QoB are valid IVs.
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We further investigate a low dimensional specification, where only individuals born in a

fixed year is considered. The specification reads as

ln(Wi) = ρEi + µi

Ei =
3∑

j=1

Qijθij + ei
(25)

In this case, the dimension of exogenous variables is d = 3. Row 2-6 of Table 7 report

the results. In most cases (each test and each fixed year is considered as a case), our tests

suggest us to reject the null, one exception happens for the case Year 1923+ Shift Variant

kernel, where the p-value is close to the 5% threshold.

Table 7: p-values under Different Specifications

Gaussian IMQ Gaussian+IMQ Shift Variant Local Periodic

FULL 0.584 0.54 0.554 0.522 0.612

1921 0.488 0.466 0.484 0.456 0.494

1923 0.12 0.186 0.174 0.052 0.138

1925 0.684 0.692 0.67 0.704 0.668

1927 0.69 0.71 0.7 0.624 0.7

1929 0.164 0.19 0.194 0.188 0.17

8. Conclusion

In this paper, we propose to represent ICM tests in the RKHS. There are several mo-

tivations behind this representation. First, conventional ICM tests are based on empirical

processes and require integration to obtain the Cramer–Von Mises statistics. This integra-

tion is often unable to present closed-form test statistics. Applications of ICM tests are then

forced to focus on Birens’s or Escanciano’s ICM tests, which enjoy closed-form presenta-

tions. Second, existing literature has well documented that when conditional variables are of

high dimensional, ICM tests typically have power-loss issues. Existing dimension-reduction

tools rely on projecting the covariates onto a one-dimensional space, and integrate projected

statistics from all directions. This procedure leads to a kernel that is hard to compute (its

algorithm complexity is O(n3)). Third, although ICM tests are admissible, i.e., there exists

no test that is uniformly more powerful than ICM tests, they do not have non-trivial power

in all directions. In fact, one ICM test only has substantial power in a finite-dimensional

space (Escanciano, 2009). Thus, it is desired to have as many ICM tests as possible.

Once we represent ICM tests in RKHS, we found that (i) after specifying a kernel, the

CvM statistics is a closed-form U -statistic; (ii) a kernel embodies both the dimension and

integral measure, and hence, is a valid dimension reduction tool; (iii) with some assumptions,

new kernels could be constructed using existing kernels by addition or multiplication.

The main idea behind this representation consists of several steps: (i) the conditional

moment restriction is transformed into an unconditional moment restriction with an infinite
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number of moment conditions. This transformation is over a function space, and under the

null, the supremum (over this function space) value of the squared unconditional moment

condition is zero, i.e., the maximum moment restriction; (ii) To obtain a closed form of

the maximum moment restriction, one could restrict the function space to a unit ball of an

RKHS H(k). The maximum moment restriction corresponds to an integral operator, and

Riesz’s representation theorem states that there exists a unique element in the corresponding

H(k) that represents such an integral operator. We call the such element in H(k) the

conditional moment embedding, and its H(k)−norm is the norm of the integral operation.

Under the null, this norm should be zero; (iii) Using the kernel trick, the squared norm has

a closed-form presentation, and we can estimate it and further build a test statistic using a

U-statistic.

Kernels are essential in this framework, only ISPD kernels could lead to a conditional

moment embedding that is injective to the original null hypothesis. Commonly used ISPD

kernels are the Gaussian, the Laplacian, the Inverse multiquadric, and the Matern kernels.

One could also construct new ISPD kernels from existing ones with additional assumptions

imposed.

We further propose a projected kernel to eliminate estimation effects. The advantages

of using such a kernel are (i) the limiting null distribution of the test statistic does not

depend on how an estimator is obtained; (ii) We do not need to require the estimator to be
√
n-asymptotically linear; (iii) The corresponding tests could include certain ’non-standard’

estimators whose convergence rate is slower than 1/
√
n. We propose a simple multiplier

bootstrap to find the critical value. This is particularly appreciated if the underlying model

is non-linear and estimation is time-consuming.

A minimum distance estimator based on conditional moment embedding is developed

as a byproduct. This estimator inherits the merits of the corresponding test statistic, e.g.,

dimension-reduction properties.

Monte Carlo experiments are conducted, and simulation results indicate that the pro-

posed tests have an accurate empirical size and admirably good local power even when the

sample size is as small as n = 100 and the dimension is as high as d = 20. In addition, sim-

ulation results also suggest that the proposed tests have good power against high-frequency

alternatives. Lastly, a simple empirical application is studied.
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A. Backgrounds on the Reproducing Kernel Hilbert Space

Reproducing Kernel Hilbert Space (RKHS), first proposed in Aronszajn (1950), is a spe-

cial Hilbert space with some properties. It is a Hilbert space of functions with reproducing

kernels. Formally, RKHS is defined as

Definition 14 A Reproducing Kernel Hilbert Space is a Hilbert space H(k) of functions

f : X → R with a reproducing kernel k : X 2 → R, where (i) k(x, ·) ∈ H(k), and (ii)

⟨f, k(x, ·)⟩H(k) = f(x)

Remark. Property (ii) is called the reproducing property of H(k). By Aronszajn (1950),

every positive definite kernel k uniquely determines the RKHS for which k is a reproducing

kernel.

To gain an understanding of the kernel k, some backgrounds are needed.

Definition 15 Given a kernel k : X 2 → R and inputs x1, . . . , xn ∈ X , the n× n matrix

Kij = k(xi, xj), ∀i, j ∈ {1, . . . , n}

is called the Gram Matrix (also known as the Kernel Matrix) of k with respect to x1, . . . , xn.

Definition 16 A real n× n symmetric matrix Kij satisfying

n∑
i,j=1

cicjKij ≥ 0

for all ci ∈ R is called positive definite. If equality in the above equation only occurs

c1 = · · · = cn = 0, then we shall call the matrix strictly positive definite.

Definition 17 Let X be a nonempty set. A function k : X 2 → R which for all n ∈ N,
xi ∈ X give rise to a positive definite Gram matrix is called a positive definite kernel.

Similarly, a function k : X 2 → R which for all n ∈ N and distinct xi ∈ X gives rise to a

strictly positive definite Gram matrix is called a strictly positive definite kernel.

The RKHS is better explained in the following way. Define a map from X into the space

of functions mapping X to H(k), via

ϕ :X → H(k)

x→ k(x, ·)

Here, ϕx(·) = k(x, ·) denotes the function that assigns the value k(x, x′) to x′ ∈ X .

We next construct a dot product space containing the images of the inputs under ϕ. To

this end, considering the kernel function k(x, x′), suppose for n points, we fix one of the

variables to have k(x1, x
′), . . . , k(xn, x

′). There are all functions of the variable x′.

H(k) = {f(·) =
n∑

i=1

αik(xi, ·)} (26)
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Here, n ∈ N, αi ∈ R and xi ∈ X are arbitrary. RKHS is a function space that is the set

of all possible linear combinations of these functions (Kimeldorf and Wahba, 1971). This

equation shows that the bases of an RKHS are kernels, hence every function in the RKHS

can be written as a linear combination.

Consider two functions in this space represented as f =
∑n

i=1 αik(xi, ·), and g =∑n
j=1 βjk(xj , ·), the inner product in RKHS is defined as

⟨f, g⟩H(k) =

〈
n∑

i=1

αik(xi, ·),
n∑

j=1

βjk(xj , ·)

〉
H(k)

=

n∑
i,j=1

αiβjk(xi, xj)

The feature map ϕx(·) is a (possibly infinite-dimensional) vector whose elements are

ϕx(·) =
(√

λ1ψ1(x),
√
λ2ψ2(x), . . . ,

)⊤
= Φ(x)

where {λj ; j = 1, 2, . . .} and {ψj ; j = 1, 2, . . .} are eigenvalues and eigenfunctions of the

following eigen problem: ∫
k(x, x′)ψj(x

′)dx′ = λjψ(x)

See Minh et al. (2006) for details. One can understand the kernel as a similarity measure-

ment since the kernel can be expressed as an inner product, which is a measure of similarity

in terms of angles of vectors:

k(x, x′) = ⟨ϕx(·), ϕx′(·)⟩H(k)

= Φ(x)⊤Φ(x′)

Hence, the relative similarity of inputs is known by the kernel. However, in most of the

kernels, we cannot find an explicit expression for the feature map. Therefore, the exact

location of inputs to RKHS is not necessarily known but the relative similarity, which is

the kernel, is known.

B. Auxiliary Lemmas

Lemma 18 Suppose Assumption A5 holds, we have∥∥∥∥∥ 1n
n∑

s=1

g(zs; θ̂)k(xs, xj)− EXZ (g(Z : θ0)k(X,xj))

∥∥∥∥∥ = Op(1/
√
n) +Op(∥θ̂ − θ0∥)

Proof

1

n

n∑
s=1

g(zs; θ̂)k(xs, xj) =
1

n

n∑
s=1

g(zs; θ0)k(xs, xj) +
1

n

n∑
s=1

G(zs; θ̄)k(xs, xj)(θ̂ − θ0)

= I1,n + I2,n(θ̂ − θ0)

35



Observe that

∥I1,n − Eg(Z; θ0)k(X,xj)∥ = Op(1/
√
n)

∥I2,n − EG(Z; θ0)k(X,xj)∥ = Op(1/
√
n)

and

I2,n(θ̂ − θ0) = EG(Z; θ0)k(X,xj)Op(∥θ̂ − θ0∥) +Op(1/
√
n∥θ̂ − θ0∥)

= Op(∥θ̂ − θ0∥)

Lemma 19 Suppose Assumption 5 holds, we have∥∥∥∥∥∥ 1

n(n− 1)

∑
s ̸=k

g(zs; θ̂)k(xs, xk)g
⊤(zk; θ̂)− E

(
g(Z; θ)k(X,X ′)g⊤(Z ′, θ0)

)∥∥∥∥∥∥ =Op(1/
√
n)

+Op(∥θ̂ − θ0∥)

Proof

1

n(n− 1)

∑
s ̸=k

g(zs; θ̂)k(xs, xk)g
⊤(zk; θ̂) =

1

n(n− 1)

∑
s ̸=k

g(zs; θ0)k(xs, xk)g
⊤(zk; θ0)

+
1

n(n− 1)

∑
s ̸=k

g(zs; θ0)k(xs, xk)
(
∇θg(zk; θ̄)(θ̂ − θ0)

)⊤
+

1

n(n− 1)

∑
s ̸=k

g(zk; θ0)k(xs, xk)
(
∇θg(zs; θ̄)(θ̂ − θ0)

)⊤
+

1

n(n− 1)

∑
s ̸=k

∇θg(zs; θ̄)(θ̂ − θ0)k(xs, xk)
(
∇θg(zk; θ̄)(θ̂ − θ0)

)⊤
= I1,n + I21,n + I22,n + I3,n

It is clear that

I1,n = E
(
g(Z; θ)k(X,X ′)g⊤(Z ′, θ0)

)
+Op(1/

√
n)

I21,n = I22,n = E
(
∇θg(Z; θ0)(θ̂ − θ0)k(X,X

′)g⊤(Z ′; θ0)
)
+Op(1/

√
n) = Op(∥θ̂−θ0∥)+Op(1/

√
n)

I3,n = E
(
∇θg(Z; θ0)(θ̂ − θ0)k(X,X

′)
(
∇θg(Z

′; θ0)(θ̂ − θ0)
)⊤)

+Op(1/
√
n)

= Op(∥θ̂ − θ0∥2) +Op(1/
√
n)

Putting all pieces together, we yield what is asserted.
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Lemma 20 Suppose Assumption 5 holds, we have

∥Γ−1

n,θ̂
− Γ−1

θ0
∥ = Op(1/

√
n) +Op(∥θ̂ − θ0∥)

Proof Observe that

Γn,θ̂ − Γθ0 =
1

n

n∑
s=1

g(zs; θ0)g
⊤(zs; θ0)− Eg(Z; θ0)g⊤(Z; θ0)

=
2

n

n∑
s=1

(g(zs; θ̂)− g(zs; θ0))g
⊤(zs; θ0)

=
1

n

n∑
s=1

(g(zs; θ̂)− g(zs; θ0))(g(zs; θ̂)− g(zs; θ0))
⊤

= OP (1/
√
n) +Op(∥θ̂ − θ0∥) +Op(∥θ̂ − θ0∥2)

= OP (1/
√
n) +Op(∥θ̂ − θ0∥)

By the continuous mapping theorem, the above fact yields:

Γ−1

n,θ̂
− Γ−1

θ0
= op(1)

Furthermore, we have the decomposition:

Γ−1

n,θ̂
− Γ−1

θ0
= −Γ−1

n,θ̂
(Γn,θ̂ − Γθ0)Γ

−1
θ0

Putting everything together, we have the desired result.

C. Verifications and Proofs

Verify the Riesz Representor of (5)

Proof Note that

Cθh =

∫
ε(z; θ)h(x)dPXZ(x, z)

=

∫
ε(z; θ) ⟨h, ϕx(·)⟩H(k) dPXZ(x, z)

=

∫
⟨h, ε(z; θ)ϕx(·)⟩H(k) dPXZ(x, z)

= ⟨h,EXZ (ε(Z; θ)ϕX(·))⟩H(k)

= ⟨h,µθ⟩H(k)
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To use Riesz’s theorem, we need to show that the operator is bounded. Let ∥Cθ∥ be the

operator norm,

∥Cθ∥ = sup
∥h∥H(k)≤1

Cθh = sup
∥h∥H(k)≤1

⟨h,µθ⟩H(k) =

〈
µθ

∥µθ∥H(k)
,µθ

〉
H(k)

= ∥µθ∥H(k)

with

∥µθ∥2H(k) = E
(
ε(Z; θ)k(X,X ′)ε(Z ′; θ)

)
<∞

by Assumption (A4). Here, (X ′, Z ′) is an independent copy of (X,Z). Furthermore, by

Assumption (A2),

|Cθh| ≤ ∥h∥H(k)∥Cθ∥H(k) <∞

Thus, the Cθ is a bounded linear operator. By Riesz’s representation theorem, µθ is the

unique representer of Cθ in H(k).

Verify the Reproducing Property of (11)

Proof〈
Pϕx(·), ϕ′x(·)

〉
H(k)

= k(x, x′)−
〈
g⊤(z; θ0)Γ

−1
θ0

EXZ (g(Z; θ0)ϕX(·)) , ϕ′x(·)
〉
H(k)

= k(x, x′)− g⊤(z; θ0)Γ
−1
θ0

EXZ

(
g(Z; θ0)

〈
ϕX(·), ϕ′x(·)

〉
H(k)

)
= k(x, x′)− g⊤(z; θ0)Γ

−1
θ0

EXZ

(
g(Z; θ0)k(X,x

′)
)

Proof of Lemma (6)

Proof

k̂p(xi, xj) = k(xi, xj)− g⊤(zi; θ̂)Γ
−1

n,θ̂

(
1

n

n∑
s=1

g(zs; θ̂)k(xs, xj)

)

− g⊤(zj ; θ̂)Γ
−1

n,θ̂

(
1

n

n∑
s=1

g(zs; θ̂)k(xs, xi)

)

+ g⊤(zi; θ̂)Γ
−1

n,θ̂

 1

n(n− 1)

n∑
s ̸=k

g(zs; θ̂)k(xs, xk)g
⊤(zk; θ̂)

Γ−1

n,θ̂
g(zj ; θ̂)
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where

Γn,θ̂ =
1

n

n∑
s=1

g(zs; θ̂)g
⊤(zs; θ̂)

Hence,

k̂p(xi, xj) = k(xi, xj)− g⊤(zi; θ̂)Γ
−1

n,θ̂
I11,n − g⊤(zj ; θ̂)Γ

−1

n,θ̂
I12,n + g⊤(zi; θ̂)Γ

−1

n,θ̂
I2,nΓ

−1

n,θ̂
g(zj ; θ̂)

By Lemmas 18, 19 and 20, we have

• g⊤(zi; θ̂) = g(zi; θ0) +Op(∥θ̂ − θ0∥)

• Γ−1

n,θ̂
= Γ−1

θ0
+Op(1/

√
n) +Op(∥θ̂ − θ0∥)

• I11,n = Eg(Z; θ0)k(X,xj) +Op(1/
√
n) +Op(∥θ̂ − θ0∥)

• I12,n = Eg(Z; θ0)k(X,xi) +Op(1/
√
n) +Op(∥θ̂ − θ0∥)

• I2,n = E
(
g(Z; θ)k(X,X ′)g⊤(Z ′, θ0)

)
+Op(1/

√
n) +Op(∥θ̂ − θ0∥)

Putting all pieces together, we have

k̂p(xi, xj) = kp(xi, xj) +Op(1/
√
n) +Op(∥θ̂ − θ0∥)

Now, we are ready to show the expanding result.

nM̂2
p(θ̂) =

n

n(n− 1)

∑
i ̸=j

ε(zi; θ0)kp(xi, xj)ε(zj , θ0)

+
2n

n(n− 1)

∑
i ̸=j

ε(zi; θ0)kp(xi, xj)g
⊤(zj ; θ̄)(θ̂ − θ0)

+
√
n(θ̂ − θ0)

⊤ 1

n(n− 1)

∑
i ̸=j

g(zi; θ̄)kp(xi, xj)g
⊤(zj ; θ̄)

√
n(θ̂ − θ0) +Op(1/

√
n)

= nA
(p)
1,n + 2nA

(p)
2,n(θ̂ − θ0) +

√
n(θ̂ − θ0)

⊤A
(p)
3,n

√
n(θ̂ − θ0)

+Op(1/
√
n) +Op(∥θ̂ − θ0∥)

where θ̄ = γθ̂ + (1− γ)θ0, γ ∈ (0, 1), and the lasts term (Op(1/
√
n) + Op(∥θ̂ − θ0∥)) comes

from the fact that 1/(n(n− 1))
∑

i ̸=j ε(zi; θ0)ε(zj , θ0) is a degenerate U-statistic, hence,

(Op(1/
√
n) +Op(∥θ̂ − θ0∥))

1

n− 1

∑
i ̸=j

ε(zi; θ0)ε(zj , θ0) = Op(1/
√
n) +Op(∥θ̂ − θ0∥)

One can easily check that A
(p)
1,n, A

(p)
2,n and A

(p)
3,n are degenerate U-statistic, and hence

A
(p)
1,n, A

(p)
2,n, A

(p)
3,n = OP (1/n). Thus, we have

nM̂2
p(θ̂) =

n

n(n− 1)

∑
i ̸=j

ε(zi; θ0)kp(xi, xj)ε(zj , θ0) +Op(∥θ̂ − θ0∥) +Op(∥θ̂ − θ0∥2)

+Op(1/
√
n)
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Proof of Theorem 5.

Proof Suppose that µ
(p)
θ1

= µ
(p)
θ2

and let δ(x) = E(x; θ1)− E(x, θ2). Then we have

∥µ(p)θ1
− µ

(p)
θ2

∥2H(kp)
=

∥∥∥∥∫ ξ
(p)
θ1

(x, z)dPXZ(x, z)−
∫
ξ
(p)
θ2

(x, z)dPXZ(x, z)

∥∥∥∥2
H(kp)

=

∥∥∥∥∫ E(x; θ1)ϕ(p)x (·)dPX(x)−
∫

E(x; θ2)ϕ(p)x (·)dPX(x)

∥∥∥∥2
H(kp)

=

∥∥∥∥∫ (E(x; θ1)− E(x; θ2))ϕ(p)x (·)dPX(x)

∥∥∥∥2
H(kp)

=

∫ ∫
δ(x)kp(x, x

′)δ(x′)dPX(x)dPX′(x′) = 0

where X ′ is an independent copy of X. Since kp(·, ·) is ISPD kernel and the assumption

that δ(x) is not colinear with g(Z; θ0), it follows that the function φ(x) = δ(x)pX(x) has

zero L2-norm, i.e., ∥φ∥22 = 0 where pX denotes the density of PX . As a result, δ(x) = 0 a.s

PX implying that PX(B0) = 1 where B0 = {x ∈ X : E(x; θ1) − E(x; θ2) = 0}. Therefore,

E(x; θ1) = E(x; θ2) for PX almost surely.

Proof of Theorem 9

Proof

Under local alternatives, ε(z; θ̂) = ε(z; θ0) + (θ̂ − θ0)
⊤g(z; θ̄) +R(x)/

√
n. Hence,

nM̂2
n(θ̂) =

n

n(n− 1)

∑
1≤i ̸=j≤n

ε(zi; θ0)k̂p(xi, xj)ε(zj ; θ0)

+
2n

n(n− 1)

∑
1≤i ̸=j≤n

ε(zi; θ0)k̂p(xi, xj)g
⊤(zj ; θ̄)(θ̂ − θ0)

+
√
n(θ̂ − θ0)

⊤

 1

n(n− 1)

∑
1≤i ̸=j≤n

g(zi; θ̄)k̂p(xi, xj)g
⊤(zj ; θ̄)

√
n(θ̂ − θ0)

+
2n

n(n− 1)

∑
1≤i ̸=j≤n

ε(zi; θ0)k̂p(xi, xj)
R(xj)√

n

+
2n

n(n− 1)

∑
1≤i ̸=j≤n

(θ̂ − θ0)
⊤g(zi; θ̄)k̂p(xi, xj)

R(xj)√
n

+
n

n(n− 1)

∑
1≤i ̸=j≤n

R(xi)√
n
k̂p(xi, xj)

R(xj)√
n

= nA1,n + 2nA2,n(θ̂ − θ0) +
√
n(θ̂ − θ0)

⊤A3,n

√
n(θ̂ − θ0) + 2

√
nA4,n

+ 2
√
n(θ̂ − θ0)

⊤A5,n +A6,n
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Note that

nA1,n
d→

∞∑
k=1

τ
(p)
k (W 2

k − 1)

by Theorem 7. A2,n is a degenerate U -statistic by the orthogonality argument, hence

2nA2,n(θ̂ − θ0) = Op(∥θ̂ − θ0∥) = op(1).

Furthermore,

A3,n = Op(1/n)

,

Al,n = Op(1/
√
n), l = 4, 5

by the orthogonality between kp(·, ·) and g(z; θ) and the fact that k̂p(x, x
′) = kp(x, x

′) +

Op(1/
√
n) +Op(∥θ̂ − θ0∥). Thus, by Serfling (1980)

√
n(θ̂ − θ0)

⊤A3,n

√
n(θ̂ − θ0) + 2

√
nA4,n + 2

√
n(θ̂ − θ0)

⊤A5,n

d→ 2N
(
0, 4VarX,Z

(
EX′,Z′ε(Z; θ0)kp(X,X

′)R(X ′)
))

Lastly,

A6,n = E
(
R(X)kp(X,X

′)R(X ′)
)
+Op(1/

√
n)

Putting these pieces together, we yield what is asserted.

Proof of Lemma 10

Proof

M2
p(θ0) = E

(
ε(Z; θ0)kp(X,X

′)ε(Z ′; θ0) +
R(X)R(X ′)

n
kp(X,X

′) + 2ε(Z; θ0)
R(X ′)√

n
kp(X,X

′)

)
=
∑
j≥1

λj (Eε(Z; θ0)ej(X))2 +
∑
j≥1

λj

(
E
R(X)√

n
ej(X)

)2

+ 2
∑
j≥1

λjEε(Z; θ0)ej(X)E
(
R(X)√

n
ej(X)

)
Recall R(x) =

∑
s≥1 αses(x), we can further conclude that

M2
p(θ0) =

∑
j≥1

λj (Eε(Z; θ0)ej(X))2 + λj
α2
j

n
Ee2j (X) + 2λjEε(Z; θ0)ej(X)

αj√
n
Ee2j (X)

= E
(
ε(Z; θ0)kp(X,X

′)ε(Z ′; θ0)
)
+ λj

α2
j

n
+ 2λjE (ε(Z; θ0)ej(X))

αj√
n
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Proof of Theorem 11.

Proof To streamline the presentation, let

f̂θ(ui, uj) = ε(zi; θ)vik̂p(xi, xj)ε(zj ; θ)vj

fθ(ui, uj) = ε(zi; θ)vikp(xi, xj)ε(zj ; θ)vj

where ui = (vi, xi, zi). Furthermore, let (x, z)(n) = {(xi, zi); i = 1, . . . , n}, θ̂ − θ∗ =

Op(1/
√
n) under different hypotheses, and

kp(x, x
′) = k(x, x′)− g⊤(z; θ∗)Γ−1

θ∗ E(X,Z)

(
g(Z; θ∗)k(X,x′)

)
By the fact that k̂p(·, ·) = kp(·, ·) +Op(∥θ̂ − θ∗∥) +Op(1/

√
n), we have

nM̂2,∗
p (θ̂) =

n

n(n− 1)

∑
i ̸=j

f̂θ̂(ui, uj)

=
n

n(n− 1)

∑
i ̸=j

fθ0(ui, uj) + op(1)

= nM2,∗
p (θ0) + op(1)

Let

Tn =
1

n

∑
i ̸=j

fθ̂(ui, uj)

we have nM2,∗
p (θ0) =

n
n−1Tn, the goal is to show that

Tn
d,∗→ Y =

∞∑
k=1

τ
(p)
k (W 2

k − 1)

We shall carry this out by the method of characteristic functions, i.e., to show that

E(eiωTn |(x, z)(n)) → E(eiωY ), n→ ∞, ∀ω

Denote {ρk(·)} as the orthonormal eigenfunctions corresponding to the eigenvalues {τ (p)k }
defined in connection with ε(z; θ0)kp(x, x

′)ε(z′; θ0). Thus,

fθ0(u1, u2) =
∑
k≥1

τ
(p)
k v1v2ρk(y1)ρk(y2)

with y1 = (x1, z1)

Thus, Tn might be expressed as

Tn =
1

n

∑
i ̸=j

∑
k≥1

τ
(p)
k vivjρk(yi)ρk(yj)
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Now put

TnK =
1

n

∑
i ̸=j

K∑
k=1

τ
(p)
k vivjρk(yi)ρk(yj)

Using the equality |eiz − 1| < |z|, we have for an arbitrary δ > 0, there exists a K such that

|E(eiωTn |(x, z)(n))− E(eiωTnK |(x, z)(n))| ≤ E((|eiωTn − eiωTnK |)|(x, z)(n))
≤ |ω|E((|Tn − TnK |)|(x, z)(n))

≤ |ω|
(
E(Tn − TnK)2|(x, z)(n)

)1/2
Observe that Tn − TnK is in the form of a U -statistic, that is,

Tn − TnK =
2

n

(
n

2

)
UnK

where

UnK =

(
n

2

)−1∑
i ̸=j

gK(ui, uj)

with

gK(u1, u2) =
∞∑

k=K+1

τ
(p)
k ρk(y1)ρk(y2)v1v2

Note that

E
(
U2
nK |(x, z)(n)

)
=

 ∞∑
k=K+1

(n
2

)−1∑
i ̸=j

τ
(p)
k ρk(yi)ρk(yj)

2

=

( ∞∑
k=K+1

U∗
nk

)2

Thus,

E
(
(Tn − TnK)2|(x, z)(n)

)
= (n− 1)2

(
n

2

)−1
( ∞∑

k=K+1

U∗
nk

)2

≤ 2

( ∞∑
k=K+1

U∗
nk

)2

Since ( ∞∑
k=1

U∗
nk

)2

=

(n
2

)−1∑
i ̸=j

ε(zi; θ
∗)kp(xi, xj)ε(zj ; θ

∗)

2

<∞

One can fix ω and let δ > 0 be given, then choose and fix K large enough that

|ω|

2

( ∞∑
k=K+1

U∗
nk

)2
1/2

< δ

43



Thus we have

|E(eiωTn |(x, z)(n))− E(eiωTnK |(x, z)(n))| < δ (27)

Next we show that TnK |(x, z)(n) d→ Yk =
∑K

k=1 τ
(p)
k (W 2

k − 1). Let

Wkn =
1√
n

n∑
i=1

viρk(yi); Zkn =
1

n

n∑
i=1

v2i ρ
2
k(yi)

then,

TnK =
K∑
k=1

τ
(p)
k (W 2

nk − Znk)

Notice that

E(Wnk|(x, z)(n)) =
1√
n

n∑
i=1

ρk(yi) (EV ) = 0

and

Cov(Wjn,Wkn|(x, z)(n)) =
1

n

n∑
i=1

ρk(yi)ρj(yi)
p→

1, j = k

0, j ̸= k

Therefore, by Lindeberg–Levy CLT,

(W1n, . . . ,WKn) |(x, z)(n)
d→ N(0, IK)

Furthermore, by SLLN,

(Z1n, . . . , ZKn) |(x, z)(n)
p→ (1, . . . , 1)

Thus,

TnK |(x, z)(n) d→ Yk =
K∑
k=1

τ
(p)
k (W 2

k − 1)

and for all n sufficiently large

|E(eiωTnK |(x, z)(n))− EeiωYK | < δ (28)

Finally, denote Y as the limit in the mean square of Yk as K → ∞. Then

|EeiωYK − EeiωY | ≤ |ω|
[
E(Y − YK)2

]1/2
≤ |ω|

[
E(W 2

1 − 1)2
]1/2 [ ∞∑

k=K+1

(τ
(p)
k )2

]1/2
< δ

[
E(W 2

1 − 1)2
]1/2

(29)

Combining inequality equations (27),(28) and (29), we have, for any ω and any δ > 0,

and for all n sufficiently large,

|E(eiωTn |(x, z)(n))− E(eiωY )| ≤ δ
(
2 +

[
E(W 2

1 − 1)2
]1/2)
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Thus,

Tn
d,∗→ Y

Proof of Theorem 12.

Proof Essentially, we need to show the uniform convergence of R̂V (θ), the rest of the

consistency proof follows immediately from Theorem 2.1 of Newey and McFadden (1994).

To prove that supθ∈Θ|R̂V (θ) − Rk(θ)|
p→ 0, we need to show that (1) fθ(v, v

′) is

continuous at each θ with probability one; and (2) EV,V ′ (supθ∈Θ|fθ(V, V ′)|) < ∞, and

EV,V (supθ∈Θ|fθ(V, V )|) <∞ (Lemma 8.5 of Newey and McFadden (1994)).

To this end, we can check that

|fθ(v, v′)| = |ε(z; θ)k(x, x′)ε(z′; θ)|
≤ |ε(z; θ)||ε(z′; θ)||k(x, x′)|
≤ |ε(z; θ)||ε(z′; θ)|

√
k(x, x)k(x′, x′)

Since Θ is compact, E (|Y |) < ∞, and Eθ (Y |X) < ∞, we have |ε(z; θ)| < ∞ for all θ ∈ Θ.

Furthermore, k(·, ·) is bounded by Assumption A4, we have fθ(v, v
′) <∞ and thus fθ(v, v

′)

is continuous at each θ.

Next, observe that

EV,V ′

(
sup
θ∈Θ

|fθ(V, V ′)|
)

≤ E
(
sup
θ∈Θ

|ε(Z; θ)||ε(Z ′; θ)|
√
k(X,X)k(X ′, X ′)

)
≤ E

(
sup
θ∈Θ

|ε(Z; θ)||ε(Z ′; θ)|
)
sup
x
k(x, x)

= E2

(
sup
θ∈Θ

|ε(Z; θ)|
)
sup
x
k(x, x) <∞

and

EV,V

(
sup
θ∈Θ

|fθ(V, V )|
)

≤ E
(
sup
θ∈Θ

(|ε(Z; θ)|)2
)
sup
x
k(x, x)

= E
(
sup
θ∈Θ

(|Y − Eθ(Y |X)|)2
)
sup
x
k(x, x)

≤ 2

(
E(|Y |2) + E

(
sup
θ∈Θ

|Eθ(Y |X)|2
))

sup
x
k(x, x) <∞

Proof of Theorem 13.

Proof By Theorem 3.1 of Newey and McFadden (1994), we need to show
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• (a) θ̂ − θ0
p→ 0;

• (b) R̂V (θ) is twice continuously differentiable;

• (c)
√
nR̂V (θ)

d→ N(0, 4VarV
(
E2
V ′(∇θfθ0(V, V

′))
)
);

• (d) there existH(θ) that is continuous at θ0 and supθ∈Θ∥∇2
θR̂V (θ)−E

(
∇2

θfθ(V, V
′)
)
∥F

p→
0;

• (e) H(θ0) is non-singular.

With the consistency result and assumptions made, we only need to check conditions

(c) and (d).

Since
√
n
(
∇θR̂V (θ)−∇θR̂U (θ)

)
p→ 0 (see, Section 5.7.3 of Serfling (1980)), we can

check the asymptotic properties of
√
n∇θR̂U (θ) instead. Note that

∇θR̂U (θ) =
1

n(n− 1)

∑
i ̸=j

∇θfθ(vi, vj)

∇θfθ(vi, vj) = (g(zi; θ)ε(zj ; θ) + g(zj ; θ)ε(zi; θ)) k(xi, xj)

First, we show that

√
n∇θR̂U (θ)

d→ N(0, 4VarV
(
E2
V ′(∇θfθ0(V, V

′))
)
)

The proof follows from Section 5.5.1 and 5.5.2 of Serfling (1980). We need to show (i)

∇θR̂U (θ0)
p→ 0; and (ii) whether VarV

(
E2
V ′(fθ0(V, V

′))
)
> 0 or not. (i) can be easily

obtained by L.L.N.

To verify (ii), note that

VarV
(
E2
V ′(∇θfθ0(V, V

′))
)
= EV

(
E2
V ′(∇θfθ0(V, V

′))
)
≥ 0

where the equality hold if for any V , there is EV ′(∇θfθ0(V, V
′)) = 0, i.e.,

EV ′(∇θfθ0(V, V
′)) = EV ′

(
g(Z ′; θ0)k(X,X

′)
)
ε(Z; θ0) + EV ′

(
ε(Z ′; θ0)k(X,X

′)
)
g(Z; θ0) = 0

Since

EV ′
(
ε(Z ′; θ0)k(X,X

′)
)
= EX′

(
E(ε(Z ′; θ0)|X ′)k(X,X ′)

)
= 0

Equality holds if

EV ′
(
g(Z ′; θ0)k(X,X

′)
)
= EX′

(
E(g(Z ′; θ0)|X ′)k(X,X ′)

)
= 0

However, the assertion that E(g(Z ′; θ0)|X ′) = 0 contradicts with the condition that H is

non-singular. Thus, we conclude

VarV
(
E2
V ′(∇θfθ0(V, V

′))
)
> 0
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Next, we show the uniform consistency of ∇2
θR̂U (θ). Note that

∇2
θR̂U (θ) =

1

n(n− 1)

∑
i ̸=j

∇2
θfθ(vi, vj)

∇2
θfθ(vi, vj) =

(
g(zi; θ)g

⊤(zj ; θ) + g(zj ; θ)g
⊤(zi; θ) +∇θg(zi; θ)ε(zj ; θ) +∇θg(zj ; θ)ε(zi; θ)

)
k(xi, xj)

We need to show that (i) ∇2
θR̂U (θ) is continuous at each θ with probability one, and (ii)

there exists E
(
supθ∈Θ∥∇2

θfθ(V, V
′)∥2F

)
<∞ and E

(
supθ∈Θ∥∇2

θfθ(V, V )∥2F
)
<∞.

To prove (i), we exploit the triangle inequality of the Frobenius norm,

∥∇2
θR̂U (θ)∥F ≤

(
2∥g(z; θ)g⊤(z′; θ)∥F + |ε(z; θ)|∥∇θg(z

′; θ)∥F + |ε(z′; θ)|∥∇θg(z; θ)∥F
)
k(x, x′)

= d(v, v′)

Since Eθ(Y |X) is twice continuously differentiable about θ and Θ is compact, we have

Eθ(Y |X) bounded as well as each entry of g(z; θ) and ∇θg(z; θ) for ∥z∥ <∞. Furthermore,

since k(·, ·) is also bounded, thus, d(v, v′) < ∞ if v, v′ are bounded. We conclude then (i)

must hold.

To show (ii), note that

E
(
sup
θ∈Θ

∥∇2
θfθ(V, V

′)∥2F
)

≤ 2E
(
sup
θ∈Θ

∥g(Z; θ)g⊤(Z ′; θ)∥F + |ε(Z; θ)|∥∇θg(Z
′; θ)∥F

)
sup
x
k(x, x)

= 2

((
E sup

θ∈Θ
∥g(Z; θ)∥F

)2

+ E
(
sup
θ∈Θ

|ε(Z; θ)|
)
E
(
sup
θ∈Θ

∥∇θg(Z
′; θ)∥F

))
× sup

x
k(x, x)

<∞

E
(
sup
θ∈Θ

∥∇2
θfθ(V, V )∥2F

)
≤ 2E

(
∥g(Z; θ)g⊤(Z; θ)∥F + |ε(Z; θ)|∥∇θg(Z; θ)∥F

)
sup
x
k(x, x)

≤
(
2E
(
sup
θ∈Θ

∥g(Z; θ)∥2F
)
+ 2E

(
sup
θ∈Θ

|ε(Z; θ)|
)
E
(
sup
θ∈Θ

∥∇θg(Z; θ)∥F
))

× sup
x
k(x, x)

<∞

Therefore, by Lemma 8.5 of Newey and McFadden (1994), we have

sup
θ∈Θ

∥∇2
θR̂V (θ)− E

(
∇2

θfθ(V, V
′)
)
∥F

p→ 0

The rest of the asymptotic normality proof follows from Theorem 3.1 of Newey and

McFadden (1994).
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Verification of Equation (23).

Proof

E
[
ε(Z; θ)kp(X,X

′)ε(Z ′; θ)
]
= E

〈
ε(Z; θ)PϕX(·), ε(Z ′; θ)PϕX′(·)

〉
H(k)

=
〈
E(X,Z)ε(Z; θ)PϕX(·),E(X′,Z′)ε(Z

′; θ)PϕX′(·)
〉
H(k)

Observe that

E(X,Z)ε(Z; θ)PϕX(·) =
∫
X ,Z

ε(z; θ)
(
ϕx(·)− g⊤(z; θ)Γ−1

θ0
E(X,Z) (g(Z; θ)ϕX(·))

)
dP(X,Z)(x, z)

=

∫
X ,Z

ε(z; θ)ϕx(·)dP(X,Z)(x, z)

−
∫
X ,Z

ε(z; θ)g⊤(z; θ)Γ−1
θ0

E(X,Z) (g(Z; θ)ϕX(·)) dP(X,Z)(x, z)

Further analysis of the second part, we have∫
X ,Z

ε(z; θ)g⊤(z; θ)Γ−1
θ0

E(X,Z) (g(Z; θ)ϕX(·)) dP(X,Z)(x, z)

=

∫
X ,Z

ε(z; θ)g⊤(z; θ)Γ−1
θ0

∫
X ,Z

g(z; θ)ϕx(·)dP(X,Z)(x, z)dP(X,Z)(x, z)

=

∫
X ,Z

∫
X ,Z

ϕx(·)g⊤(z; θ)Γ−1
θ0
g(z; θ)ε(z; θ)dP(X,Z)(x, z)dP(X,Z)(x, z)

=

∫
X ,Z

ϕx(·)g⊤(z; θ)Γ−1
θ0

E(X,Z) (g(Z; θ)ε(Z; θ)) dP(X,Z)(x, z)

Thus,

E(X,Z)ε(Z; θ)PϕX(·) =
∫
X ,Z

ε(z; θ)ϕx(·)dP(X,Z)(x, z)

−
∫
X ,Z

ϕx(·)g⊤(z; θ)Γ−1
θ0

E(X,Z) (g(Z; θ)ε(Z; θ)) dP(X,Z)(x, z)

=

∫
X ,Z

(
ε(z; θ)− g⊤(z; θ)Γ−1

θ0
E(X,Z) (g(Z; θ)ε(Z; θ))

)
ϕx(·)dP(X,Z)(x, z)

=

∫
X ,Z

εp(z; θ)ϕx(·)dP(X,Z)(x, z) = E(X,Z)εp(Z; θ)ϕX(·)

Hence,

E
[
ε(Z; θ)kp(X,X

′)ε(Z ′; θ)
]
= E

[
εp(Z; θ)k(X,X

′)εp(Z
′; θ)

]
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D. Additional Simulations

We provide more simulation results here. We focus on two sets of DGPs. The first batch

of DGPs focuses on the high-frequency alternatives:

• DGP-Freq(m): Yi = β0 + β1X1i + β2X2i + 2sin(mX1i)sin(mX2i) + σiεi

where X1, X2 ∼ N(0, 3), σi =
(
0.1 +X2

1 +X2
2

)1/2
, and we set εi ∼ N(0, 1), βj = 1; j =

0, 1, 2. We specify m = 0.5, 1.0, 2.0, corresponding to low-, moderate-, and high-frequency

alternatives, respectively. We use the Gaussian kernel with tuning parameter set as de-

scribed in Section 6, and the IMQ kernel with parameters c = 1, γ = 5. The following

simulation results further illustrate the point that different kernels would have different

power properties. Specifically, for moderate- and high-frequency alternatives, the Gaussian

kernel only has trivial power, while for the IMQ kernel, we obtain admirably well power

properties.

Table 8: Simulation Results, Frequency Alternatives

N=100 α = 0.1 α = 0.05 α = 0.01

DGP Gaussian IMQ(1,5) Gaussian IMQ(1,5) Gaussian IMQ(1,5)

DGP-Freq(0.5) 0.35 0.28 0.238 0.149 0.093 0.012

DGP-Freq(1.0) 0.11 0.283 0.062 0.167 0.013 0.034

DGP-Freq(2.0) 0.214 0.967 0.066 0.1 0.007 0.016

N=200 0.1 0.05 0.01

DGP Gaussian IMQ(1,5) Gaussian IMQ(1,5) Gaussian IMQ(1,5)

DGP-Freq(0.5) 0.497 0.384 0.373 0.268 0.168 0.07

DGP-Freq(1.0) 0.128 0.462 0.072 0.325 0.013 0.113

DGP-Freq(2.0) 0.12 0.316 0.062 0.196 0.013 0.039

N=400 0.1 0.05 0.01

DGP Gaussian IMQ(1,5) Gaussian IMQ(1,5) Gaussian IMQ(1,5)

DGP-Freq(0.5) 0.793 0.725 0.692 0.613 0.409 0.339

DGP-Freq(1.0) 0.105 0.751 0.054 0.641 0.012 0.376

DGP-Freq(2.0) 0.099 0.565 0.039 0.397 0.005 0.166

The second batch of DGPs is about non-linear model specification tests. Specifically, we

focus on testing the propensity score models. The propensity score was initially introduced

by Rosenbaum and Rubin (1983) to adjust for observable differences between the treatment

and control groups when treatment is binary. It is defined as the conditional probability

of receiving treatment given a vector of pre-treatment covariates. It is well understood

that one can use propensity scores to estimate causal effects through matching, weighting,

regression, subclassification, or their combinations.

Given the high dimensionality of available pre-treatment covariates and limited sample

size, researchers are coerced to adopt a parametric model for the propensity score to bypass

the “curse of dimensionality”.
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We consider the following DGPs, which are similar to Sant’Anna and Song (2020);

Sant’Anna and Song (2019):

• DGP1: D∗ = −
∑10

j=1 Xj

6 − ε;

• DGP2: D∗ = −1−
∑10

j=1 Xj

10 + X1X2
2 − ε;

• DGP3: D∗ = −1−
∑10

j=1 Xj

10 +
X1

∑5
k=2 Xk

4 − ε;

• DGP4: D∗ = −1−
∑10

j=1 Xj

10 +
∑10

k=1 X
2
k

10 − ε;

• DGP5: D∗ =
−0.1+0.1

∑5
j=1 Xj

exp(−0.2
∑10

k=1 Xk)
− ε;

For each DGPs, D = I{D∗ > 0}, ε ⊥ X, with X = (1, X1, . . . , X10)
⊤, where X1 = Z1,

X2 = (Z1 + Z2)/
√
2, Xk = Zk; k = 3, . . . , 10, and {Zk; k = 1, . . . , 10} and ε are i.i.d

standard normal random variables.

For DGP1-DGP5, the null H0 considered is

H0 : ∃θ∗ = (θ0, θ1, . . . , θ10) ∈ Θ : E (D|X) = Φ(X⊤θ∗) PX − a.s

where Φ(·) is the CDF of the standard normal distribution. We estimate θ∗ using the probit

maximum likelihood. Under the null, the expectation of the general residual is now

E(X; θ∗) = E
(
D − Φ(X⊤θ∗)|X

)
= 0

Clearly, DGP1 falls under H0, whereas DGP2-DGP5 fall under H1, i.e., the negation of the

null.

We use the Gaussian kernel with the tuning parameter described in Section 6 to perform

the test. The simulation results are presented in Table 9. From the results of DGP1, we

find that the actual finite sample size of the proposed test is close to its nominal size, even

when the sample size is as small as 100. The proposed test performs admirably well in most

alternatives (DGP2-DGP4), however, in DGP5, the proposed test has a weak power.

Table 9: Simulation Results, Propensity Scores

α = 0.1 α = 0.05 α = 0.01

N=100 N=200 N=400 N=100 N=200 N=400 N=100 N=200 N=400

DGP1 0.099 0.104 0.1 0.054 0.057 0.051 0.014 0.011 0.01

DGP2 0.436 0.767 0.978 0.341 0.669 0.957 0.191 0.445 0.883

DGP3 0.256 0.479 0.816 0.177 0.368 0.721 0.073 0.177 0.49

DGP4 0.557 0.858 0.992 0.483 0.802 0.985 0.295 0.669 0.967

DGP5 0.11 0.167 0.221 0.072 0.096 0.125 0.02 0.023 0.032
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