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Abstract

I propose a counting process approach to analyze multiple spell duration data. These data

are doubly stochastic in a sense that both durations for an individual and the number of

durations within a fixed period are random. I allow unobserved individual heterogeneities

to enter into the model as fixed effects. In addition, conditional on the individual fixed

effect, durations are state dependent. A first-difference transformation is developed to

cancel fixed effects, and a minimum distance estimator is re-introduced with simplified

proofs. Finite sample properties are investigated in simulations. The approach is applied

to studying an individual’s work absence decisions.
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1. Introduction

Duration data describes the amount of time that elapsed until a given event, or the length

of time spent in a given state. Typical Economical and social phenomenons measured in

terms of duration include duration of unemployment, duration of a strike, duration between

two purchases of an individual, age of a woman at birth of first child, etc. Given an i.i.d

sample T1, T2, . . . , Tn of durations from the distribution function F , one often characterizes

a duration model through the hazard rate h(t):

h(t) = lim
∆→0

Pr(t ≤ T < t+∆|T > t)

∆
=

f(t)

1− F (t)

where f is the corresponding probability density function. h(t) is also the basic quantity in

the counting process approach to duration analysis, e.g., see Andersen et al. (2012). In this
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approach, the duration data are represented as single-event counting processes Ni(t), i =

1, . . . , n where

Ni(t) = I{Ti ≤ t}

counts 1 if the event {Ti ≤ t} happens and otherwise Ni(t) = 0 throughout. The dynamics

of Ni(t) is described by its (random) intensity process which is a product:

λi(t|Fi(t−)) = h(t)I{Ti > t}

of the hazard rate and the random process I{Ti > t} indicating whether i is at risk just

before time t. The interpretation of the intensity process is that λi(t)dt = E(dNi(t)|Fi(t−))

the conditional expectation of the jump size dNi(t) at time t given the observed history

Fi(t−) of individual i in (0, t).

In this paper, I extend the single spell duration analysis to a dynamic multiple spell

duration analysis using the counting process approach. I contribute to the literature in the

following areas:

Allowing sample data to be doubly stochastic. In practice, researchers often

encounter duration data that is collected within a fixed time interval, e,g., duration data

of purchases within a calendar year. For a fixed observation window T = (0, τ ], a set of

durations is denoted as {Tij} where for every individual i = 1, . . . , n, I let j = 1, . . . , ni

to denote the cardinal of each duration. Crucially, the numbers of duration {ni} for each

individual are i.i.d realizations of a random variable N , and within each individual, the

length of a duration (or a spell) Tij follows a distribution Fij . For this reason, I call such

data doubly stochastic. A close but essentially different data structure is the duration

panel data, where within the observation window T , the numbers of duration for different

individuals are often identical. In the panel data case, the analysis is performed in a

multiple spell duration model, where researchers construct economic models by specifying a

multivariate joint distribution, e.g., Heckman and Walker (1990); Honoré (1993). However,

in the context of the data {Tij}, this framework implies a sample selection problem and loss

of information: One has to fix an integer n∗, individuals with ni < n∗ would be ignored

from the estimation, while individuals with ni > n∗ would not have their information fully

utilized by researchers. Further notice that, although the data structure presented here is

similar to that of an unbalanced panel data, the source of this unbalanced phenomenon is

different. None of the conventional reasons, like rotating, randomly missing data, pooling

cross-sectional and time-series data, nonresponsive, censoring or selection bias 1is the source

for the randomness of Ni. Rather, it is the underlying data generating process that makes

Ni vary across individuals.

Allowing durations to be state dependent. If past experiences of an individual

have genuine effects on his/her future behaviors, such structural relationship is called the

1. see Baltagi and Song (2006); Hsiao (2014) for references
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state dependence. State dependence has long been documented in economic literature. For

example, in consumer data, researchers in both marketing and economics have observed a

form of persistence in choice data whereby consumers have a higher probability of choosing

products that they have purchased before. In labor economics, there are experience-rating

mechanisms that produce state dependent data. For example, a company might introduce

an experience-oriented absence regulation that links a worker’s benefit to his or her absence

score calculated over a period. In automobile insurance, an individual’s insurance premium

is calculated based on the number of claims occurred in the previous year. Most literature

assumes that, conditional on observed and unobserved individual heterogeneities, durations

are independent.

Allowing a fixed effect unobserved heterogeneity. In a fixed effect framework,

I allow an individual’s unobserved heterogeneity to be correlated with other explanatory

variables. This setting not only makes a model more flexible, but also is essentially neces-

sary when durations are state dependent, since some covariates are constructed using past

durations. Since Heckman (1978, 1981), distinguishing the impacts of unobserved hetero-

geneity from those of state dependence has been a central issue in empirical work. This

distinction has implications for the interpretation and policy implications of many observed

phenomena. For example, studies on unemployment durations seek to identify the duration

dependence in job finding from unobserved heterogeneity, e.g., Kroft et al. (2013) and the

literature cited therein. In the single spell duration literature, key results are that if the

unobserved heterogeneity ν satisfies a tail condition Eν <∞, then the model can be identi-

fied (Elbers and Ridder (1982); Heckman and Singer (1984)) and are that if no assumption

on the tail distribution is made, then for a duration model with Eν < ∞, there are ob-

servationally equivalent models with Eν = ∞, see Ridder (1990). Multiple spell duration

models require weaker identification assumptions, Honoré (1993) demonstrates one does not

need to impose tail distribution restrictions to identify the model if multiple spell duration

data are available. Different from existing literature, I eliminate the individual fixed effect

through a first difference transformation.

Constructing a dynamic model for work absence. Work absences are not uncom-

mon and are costly for both firms and employers. Yet, compare to the unemployment studies

(both work absences and unemployments are interpretations of work flow), economists pay

unproportionately less attention to this issue. In management and psychological literature,

researchers often choose simple models to study the influence of some covariates. Using the

proposed framework, I build a dynamic model to analysis how past absence records affect

future absence decisions. These decisions include the decision to ask for a leave, and the

decision of the length of an absence.
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I adopt a counting process approach to analyze the duration data {Tij}. For an indi-

vidual i, let Sij =
∑j

k=1 Tik, a counting process for this individual:

Ni(s) =

∞∑
j=1

I{Sij ≤ s}

counts the number of Sij that fall below s. To avoid confusion, I will use the notation T (t) to

denote the duration and S(s) to denote the constructed event time throughout this paper.

There are two reasons for choosing this approach. First, using a counting process in a time

interval T , one can completely describe the probability structure of a stochastic process

{Tij}j≥1. Specifically, the randomness of durations {Tij} (or equivalently, {Sij} ) as well as

the randomness of counts Ni can be written concisely. State dependence structures among

durations can also be specified easily in an intensity function of a counting process. Second,

one can use the martingale relationship between the counting process and its cumulative

intensity function to construct moment restrictions. These moment restrictions provide an

estimation channel. To give an impression, considering again the i.i.d durations {Ti}i=1,...,n

represented as single-event counting processes {Ni(t) = I{Ti ≤ t}}i=1,...,n. Define the

cumulative intensity function as

Λi(t|Fi(t−)) =

∫ t

0

f(z)

1− F (z)
I{Ti > z}dz

A continuum of moment restrictions is

E (N1(t)− Λ1(t|F1(t−))) = EM1(t) = 0,∀t ∈ T

The paper is organized as the following. Section 2 introduces the model. For an in-

dividual i, begin with specifications for durations {Tij}j≥1, I show a cumulative intensity

function Λi(s|Fi(s−)) of a counting process Ni(s) can be constructed from the specified

hazard rates. Different count probabilities are also given in this section. In section 3, I

introduce a first difference transformation to ‘cancel’ the individual fixed effect. In section

4, I advocate a minimum distance estimation method. This method is based on the martin-

gale relationship between a counting process and its cumulative intensity. I provide simple

proofs on the estimator’s consistency and asymptotic normality results. Section 5 studies a

work absence application. I show that, in general, workers would react to his/her absence

score, with the exception when the absence reason is health related. Section 6 discusses

some related topics and Section 7 concludes the whole paper.

2. Multiple Spell Duration Model in A Counting Process Framework

The presentation of the framework consists of three parts. First, I will specify the

duration Tij . Second, I will characterize Ni(s) on a fixed time interval T = (0, τ ] using the

specified hazard rates. Lastly, count probabilities are presented in an evolutionary way.
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2.1 A Generalized Accelerated Failure Time Model for Duration

I specify a duration random variable Tij as:

L(Tij ;α0) = G(xij ;β0)νiuij (1)

or

logL(Tij ;α0) = logG(xij ;β0) + log νi + log uij

= logG(xij ;β0) + ηi + εij

where

• L : [0,+∞) → R+ is a known monotone function up to parameters with L(0) =

0, L(+∞) = +∞. This function measures current duration dependence.

• xij ∈ X ⊂ Rq is a q-vector of time-dependent explanatory variables that might contain

state dependent elements.

• G : Rd → R+ takes on at least two distinct values on X.

• α0 and β0 represent vectors of true parameters. νi is an unobserved heterogeneity.

• The error terms {uij} are assumed to be i.i.d over individuals and durations, and are

independent of both xij and νi.

The above specification is the Generalized Accelerate Failure Time (GAFT) model, intro-

duced by Ridder (1990). This model is non-parametrically identified up to a normalization.

In a GAFT model, one does not specify its hazard rate, but transform the duration. The

transformed duration is a dependent variable of a model with multiplicative (or additive if

the logarithm is performed) disturbance. As Ridder (1990) summarized, ‘a GAFT model

is characterized by the transformation of the dependent variable, the specification of the

regression function, and the choice of the error distribution.’ Durations that are modelled

by (non)linear models have a strong attraction to econometricians. In addition, classical

duration models such as the Proportional Hazards (PH) and Mixed Proportional Hazards

(MPH) are contained in this specification.

From a GAFT specification, one can easily derive the hazard rate of Tij :

P (Tij ≤ t) = P (L(Tij ;α0) ≤ L(t;α0))

= P (uij ≤ L(t;α0) (G(xij ;β0)νi)
−1)

= Fu

(
L(t;α0) (G(xij ;β0)νi)

−1
)

Recall the survival function F̄ij(t) = P (Tij > t) = 1−Fij(t) and the integrated hazard rate

Hij(t) are linked via

F̄ij(t) = exp(−Hij(t))
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Hence, the integrated hazard rate is

Hij(t) = − log
(
1− Fu

(
L(t;α0) (G(xij ;β0)νi)

−1
))

Here, for simplicity, I assume L(t;α0) is a non-decreasing function, and Fu is the probability

distribution of u. If L(t) = Λ0(t) (the integrated base hazard), G(xij ;β0) = exp(−x⊤ijβ0),
νi = exp(−ηi), and uij ∼ EXP (1), one has an MPH model:

hij(t) = λ0(t) exp(x
⊤
ijβ + ηi)

This GAFT specification has three features. First, the composite error term νiuij enters

the model multiplicatively. Taking the logarithm, this structure restriction is equivalent to

the additive separability assumption made in most dynamic models, see Aguirregabiria and

Mira (2010), and provides a first-difference channel to swipe out the unobserved heterogene-

ity νi. Second, νi enters into the model as an individual fixed effect, i.e., I do not restrict

the conditional distribution of ν. The third feature of the model is that I put minimum

restrictions on the state dependent structure. The time dependent explanatory variable

{xij}j≥1 is included in a σ−algebra generated by all the history information:

xij ∈ σ({tis} : s < j) (2)

Special cases are the q−th order lagged duration: G(xij ;β0) =
∑q

k=1 ti(j−k)βk, and the

permanent memory effect: G(xij ;β0) = β0
∑j−1

k=1 tik.

2.2 Characterizing a Counting Process

As described in the introduction section, one can construct a counting process Ni(s)

for each individual. In this subsection, I discuss how to use the duration specification to

characterize Ni(s).

First, note that a counting process Ni(s) can be viewed as an aggregation of single-event

counting processes:

Ni(s) =

∞∑
j=1

I{Sij ≤ s} =

∞∑
j=1

Nij(s)

where Nij(s) = I{Sij ≤ s} = I{Tij ≤ s−si(j−1)}, where {sij}j are realizations of {Sij}j . Let
hij(t) = dHij(t)/dt be the corresponding hazard rate, one might write down the intensity

function for Nij(s) as:

λij(s|Fij(s−)) = hij(s− si(j−1))I{Sij > s > si(j−1)}

The intensity function is identical to the hazard rate if an ‘event’ is still at risk, but the

value of the intensity would vanish to zero if an ‘event’ has occurred. By the construction

of Ni(s), it is reasonable to say that its intensity function λi(s|Fi(s−)) should be:

λi(s|Fi(s−)) =

∞∑
j=1

hij(s− si(j−1))I{Sij > s > si(j−1)}
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The following theorem states that this is indeed the correct specification.

Theorem 1 Given a filtration Fi(s−) such that σ(Ni(z) : z < s) ⊆ Fi(s−), the cumulative

intensity function Λi(s|Fi(s−)) =
∫ s
0 λi(z|Fi(z−))dz of Ni(s) is given by:

Λi(s|Fi(s−)) =Λi(si(j−1)|Fi(si(j−1)−))

+

∫ s

si(j−1)

hij(z − si(j−1))I{Sij > z > si(j−1)}dz
(3)

where j here is the largest number such that si(j−1) < s.

Proof See Appendix B.

Theorem 1 can be used to present the well-known Doob-Meyer decomposition result.

Let Mi(s) = Ni(s) − Λi(s|Fi(s−)), the Doob-Meyer decomposition states that Mi(s) is a

martingale:

E (Mi(s)|Fi(u)) = E (Mi(u) +Mi(s)−Mi(u)|Fi(u))

=Mi(u) + E
(∫ s

u
dNi(z)− dΛi(z|Fi(z−))|Fi(u)

)
=Mi(u)

where u < s, and

EM1(s) = E (N1(s)− Λ1(s|F1(s−))) = 0, ∀s ∈ T (4)

This continuum of moment restrictions gives us a channel to estimate the model. I will

discuss the estimation method in the next section.

2.3 Count Probabilities

A key property of the data set {Tij} is that the number of durations for each individual

Ni(τ) is not fixed. In this subsection, I describe the probability of Ni(s) = m.

Consider two modified intensity functions:

λNi(s)(s,Fi(u)) = lim
∆→0

1

∆
Pr{Ni(s+∆)−Ni(s) = 1|Ni(s),Fi(u)}

where u < s, and

λ̃Ni(s)(s) = lim
∆→0

1

∆
Pr{Ni(s+∆)−Ni(s) = 1|Ni(s)}

λNi(s)(s,Fi(u)) is an intensity that is conditional on history Fi(u) as well as the present

state Ni(s). λ̃Ni(s)(s) is an intensity function that is only conditional on the current state,

while positions of past events do not matter.

The following lemmas from Rubin (1972) describe the probability of Ni(s) = m.
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Lemma 2 For a counting process, ∀s > u ≥ 0, m = 0, 1, 2, . . ., one has

∂

∂s
Pr{Ni(s) = m|Fi(u)} = λm−1(s,Fi(u)) Pr{Ni(s) = m− 1|Fi(u)}

− λm(s,Fi(u)) Pr{Ni(s) = m|Fi(u)}

Lemma 3 Let pm(s) = Pr{Ni(s) = m} is given by

∂

∂s
p0(s) = −λ̃0(s)p0(s)

∂

∂s
pm(s) = λ̃m−1(s)pm−1(s)− λ̃mpm(s), m ≥ 1

Lemma 1 states that an evolution of a conditional probability satisfies a difference-

differential equation, while Lemma 2 shows that a similar equation also governs the evolution

of an unconditional probability. Brief proofs of these lemmas can be found in Appendix B.

3. A First Difference Transformation

I introduce a first difference transformation to cancel νi in this section. Some illustration

examples are also presented here.

3.1 Method

The composite error term νiuij is additive after one takes the logarithm of the GAFT

model. This structure provides a way to perform the first difference operation to cancel νi:

∆ logL(Tij ;α0) = log

(
G(xij ;β0)

G(xi(j−1);β0)

)
+∆εij , j ≥ 2

where ∆yij = yij − yi(j−1). In addtion, suppose that

• ∆ logL(Tij ;α0) = α0∆L̃(Tij)

• L̃(Tij) : R+ → R+ is a known function with no unknown parameters.

Then the first difference result could be rewritten as:

∆L̃(Tij) = log

(
G(xij ;β0)

G(xi(j−1);β0)

)1/α0

+ log

(
uij

ui(j−1)

)1/α0

One can calculate a series of new ‘durations’ {exp(∆L̃(Tij))}j≥2 for each individual i.

The distribution function of exp(∆L̃(Tij)) can be easily derived:

Fexp(∆L̃(Tij))
(t) = Pr{exp(∆L̃(Tij)) < t}

= F∆εij

(
tα0 + log

(
G(xi(j−1);β0)

G(xij ;β0)

))
= Fũij

(
tα0

G(xi(j−1);β0)

G(xij ;β0)

)
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where ũij = uij/ui(j−1), Fy is the distribution function of a random variable y. Further

notice that

Fε2−ε1(a) =

∫∫
ε2−ε1≤a

fε(ε1)fε(ε2)dε1dε2

=

∫ ∞

ε1=−∞

∫ a+ε1

−∞
fε(ε2)dε2fε(ε1)dε1

=

∫ ∞

−∞
Fε(a+ ε1)dFε(ε1)

and

Fũ(u) = P (ε2 − ε1 ≤ log(u)) =

∫ ∞

−∞
Fε(log(u) + ε)dFε(ε)

Once one specifies a distribution for ε (or equivalently, u), the distribution of ∆L̃(Tij)

follows immediately.

In this study, I focus on one popular choice of εij : the Type I Extreme Value distribu-

tion, or equivalent, uij is the unit rate Exponential Distribution (Lee, 2008). Other useful

specifications for ε (or u), see Ridder (1990) for reference. Thus,

Fũ(u) =

∫ ∞

−∞
[1− exp(− exp(log u+ ε))] exp(ε− exp(ε))dε

=
u

1 + u

and

Fexp(∆L̃(Tij))
(t) =

1

1 + t−α0
G(xij ;β0)

G(xi(j−1);β0)

The corresponding integrated hazard rate H̃ij for exp(∆L̃(Tij)) reads:

H̃ij(t) = log

(
1 + tα0

G(xi(j−1);β0)

G(xij ;β0)

)
Like before, one could represent the data set {exp(∆L̃(Tij))}i,j using counting processes.

For each individual i, let S̃ij =
∑j+1

k=2 exp(∆L̃(Tik)), j ≥ 1, and one may construct a counting

process:

Ñi(s) =
∞∑
j=1

I{S̃ij ≤ s} (5)

Using Theorem 1, the corresponding cumulative intensity function is:

Λ̃i(s|Fi(s)) =Λ̃i(s̃i(j−1)|Fi(s̃i(j−1)−))

+

∫ s

s̃i(j−1)

h̃ij(z − s̃i(j−1))I{S̃ij > z > s̃i(j−1)}dz
(6)
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In the original counting process, the observation window is fixed: T = (0, τ ], but this

is not the case for the transformed counting process Ñi. This new observation window is

Ei = (0, ei], where

ei =

ni∑
j=2

exp(∆L̃(tij)) + exp
(
L̃(τ − si(ni))− L̃(ti(ni))

)
Remark. A few words on the error term εij are in order. So far, I have assumed they are

i.i.d such that the new ‘first-differenced error term’ ∆εij is well-defined, and its distribution

can be derived easily. However, the error terms could also be correlated:

εij = ρ+ εi(j−1) + vij

or equivalently for uij :

uij = exp(ρ+ vij)ui(j−1)

where {vij} are i.i.d copies of a random variable v. When ρ = 0, εij follows a random walk

process.

3.2 Examples

Example 1. Specifying a duration Tij as:

T 1+α0
ij /(1 + α0) = exp(xijβ0 + ηi)uij

or

(1 + α0) log(Tij)− log(1 + α0) = xijβ0 + ηi + εij

where xij is a state dependent variable. xij = ti(j−1) corresponds to the lagged duration

model studied in Heckman and Borjas (1980); Heckman et al. (1985); Honoré (1993), while

xij =
∑j−1

k=1 tik corresponds to a permanent memory effect. If one specifies uij ∼ EXP (1),

this GAFT model has a mixed proportional hazard rate:

hij(t) = tα0 exp(−xijβ0 − ηi)

The first difference transformation swipe out ηi:

(1 + α0)∆ log(Tij) = ∆xijβ0 +∆εij

The integrated hazard rate for exp (∆ log(Tij)) is:

H̃ij(t) = log
(
1 + t(1+α0) exp((−∆xijβ0)

)
, j ≥ 2

Let S̃ij =
∑j+1

k=2 exp (∆ log(Tik)) , j ≥ 1, and construct a new counting process:

Ñi(s) =
∞∑
j=1

I{S̃ij ≤ s}
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its corresponding cumulative intensity is:

Λ̃i(s|Fi(s)) =Λ̃i(s̃i(j−1)|Fi(s̃i(j−1)−))

+ log
(
1 + (s− s̃i(j−1))

(1+α0) exp(−∆xijβ0)
)
I{S̃ij > s > s̃i(j−1)}

Example 2. Another interesting example is when L(Tij) = exp(Tij), G(xij ;β0) =

exp(xijβ0), xij = ti(j−1), and uij ∼ EXP (1):

exp(Tij) = exp(ti(j−1)β0)νiuij

or

Tij = ti(j−1)β0 + log νi + εij

This is the classical AR(1) dynamic model. The integrated hazard rate for exp(∆Tij), j ≥ 2

is:

H̃ij(t) = log
(
1 + t exp(−∆ti(j−1)β0)

)
with an initial value ti0 given, one can accordingly construct a new counting process using

{exp(∆tij)}j≥2 and find its cumulative intensity function.

Provided that the data is balanced and |β0| < 1, conventional GMM based estimation

methods (e.g., the Anderson-Hsiao Estimator, Arellano-Bond Estimator and system GMM)

would use lags and levels as internal instrument variables. When |β0| is close to unit, these

methods would encounter the weak IV problem (Blundell and Bond, 1998). When |β0| = 1,

the IV relevance condition is no longer valid. Moreover, in a relatively long period, the IV

proliferation problem would be severe. The estimation method proposed in this study is not

based on instrument variables and is free of the above-mentioned issues. The disadvantage of

this counting process approach, however, is a full characterization of the model distribution,

hence, is more sensitive to misspecification.

4. A Minimum Distance Estimation Method

In this study, I advocate a minimum distance method to estimate model parameters.

Likelihood methods based on a joint distribution specification would create a sample selec-

tion bias. I discuss this issue in detail in Section 6.

4.1 Estimation Theories

The continuum of moment restrictions in Equation 4 provides a channel for estima-

tion. Carrasco and Florens (2000) developed a GMM method for a continuum of moment

conditions. However, to estimate the inverse of a non-invertible covariance operator, one

has to perform a Tikhonov regularization. This method is complicated and requires ad-

ditional knowledge on a tuning parameter. Kopperschmidt and Stute (2013) propose a

minimum distance method to estimate self-exciting processes under multiple observations.
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Their asymptotic properties results are based on U-statistic arguments. In this section, I

re-introduce their estimator with simplified proofs.

Denote θ ∈ Θ ⊂ Rq as parameters of interest, T as the time space, M = {Λ(s; θ) : s ∈
T , θ ∈ Θ} as the associated model for the cumulative intensity, and let

M(s; θ) = E (N1(s)− Λ1(s; θ|F1(s−)))

be the moment restriction. By Doob-Meyer decomposition result, one has

M(s; θ0) = 0 ∀s ∈ T

where θ0 is a vector of true parameters. I impose the following assumptions:

• A1. For each ε > 0.

inf
||θ−θ0||≥ε

||EΛ(·, θ0)− EΛ(·, θ)||EΛ(·,θ0) > 0

where

||f ||µ =
[∫

T
f2(z)µ(dz)

]1/2
is a semi-norm.

• A2. The process (s; θ) → Λ(s; θ) is continuous with probability one.

• A3. Λ(s; θ) is bounded in s and θ.

• A4. Θ ⊂ Rk is compact.

Assumption A1 is a weak identification condition. A2 suggests that Λ(s, θ) has a (random)

Lebesgue intensity λ(s, θ) with values in an appropriate Skorokhod space. This guarantees

continuity (but not differentiability) of Λ(s, θ) in s and allows for unexpected jumps in the

intensity function. A3 is used in ÖZTÜRK and Hettmansperger (1997), and A4 is standard

in the literature.

By Assumption A1, one has

P (M(s; θ) = 0) < 1, θ ̸= θ0

thus, M(s; θ) ̸= 0 in a non-null space of T , and one has∫
T
M(z; θ0)

2EΛ(dz; θ0) = 0

but ∫
T
M(z; θ)2EΛ(dz; θ0) ̸= 0 ∀θ ̸= θ0

Hence,

θ0 = argmin
θ∈Θ

∫
T
M(z; θ)2EΛ(dz; θ0)

12



By Lemma 3 of Kopperschmidt and Stute (2013), the above equation can be re-written

as:

θ0 = argmin
θ∈Θ

||EΛ(·; θ0)− EΛ(·; θ)||2EΛ(·;θ0)

By Lemma 5 of the same paper, one has

||N̄n − Λ̄n(·; θ)||2N̄n

p→ ||EΛ(·; θ0)− EΛ(·; θ)||2EΛ(·;θ0)

where

N̄n =
1

n

n∑
i=1

Ni, Λ̄n(·; θ) =
1

n

n∑
i=1

Λi(·; θ)

One can write the minimum distance estimator as

θ̂n = argmin
θ∈Θ

||N̄n − Λ̄n(·; θ)||2N̄n

= argmin
θ∈Θ

∫
T
M̄n(z; θ)

2N̄n(dz)

where M̄n(s; θ) = N̄n(s) − Λ̄n(s; θ), and Mi(s; θ) = Ni(s) − Λi(s; θ). The quantity ||N̄n −
Λ̄n(·; θ)||2N̄n

represents an overall measure of fit of Λ̄n(·; θ) to N̄n. This objective function

is a weighted Cramér-von Mises statistic, which can be interpreted as a minimum distance

estimator. The use of a counting measure is particularly convenient, as it turns a continuous

integration into a discrete finite-many summation.

Theorem 4 Under Assumptions A1-A4, one has

θ̂n
a.s→ θ0

Proof See Appendix B

In order to obtain the asymptotic normality, additional assumptions are required.

• A5. Λ(s; ·) is once differentiable in a neighborhood of θ0 and satisfies Λ̇(s; θ) is square

integrable w.r.t EΛ(·; θ0) where N0 is a neighborhood of θ0 and Λ̇(s; θ) = ∂Λ(s; θ)/∂θ.

• A6. θ0 ∈ int(Θ).

Assumption A5 is a standard smoothness condition. A5 is unchanged if one replaces Λ(s; ·)
byM(s; ·), and Λ̇(s; θ) by Ṁ(s; θ) = EṀ1(s; θ) = ∂M(s; θ)/∂θ. Assumption A6 is standard.

Theorem 5 Under Assumptions A1-A6, one has

√
n

(∫
T
Ṁ(z; θ0)Ṁ(z; θ0)

⊤EΛ(dz; θ0)
)
(θ̂n − θ0)

d→
∫
T
Ṁ(z; θ0)BΓEΛ(dz; θ0)

where BΓ denotes a centered Gaussian process with covariance structure given by Γ(s1, s2) =

E(M1(s1; θ0)M1(s2; θ0)).

13



Proof See Appendix B.

This theorem naturally leads to the following corollary.

Corollary 6 Under Assumptions A1-A6, one has

√
n(θ̂n − θ0)

d→ N(0,Ω)

where

Ω =

(∫
T
Ṁ(z; θ0)Ṁ(z; θ0)

⊤EΛ(dz; θ0)
)−1

×∫
T

∫
T
Ṁ(s1; θ0)Ṁ(s2; θ0)

⊤Γ(s1, s2)EΛ(ds1; θ0)EΛ(ds2; θ0)×(∫
T
Ṁ(z; θ0)Ṁ(z; θ0)

⊤EΛ(dz; θ0)
)−1

Proof This result follows immediately from Theorem 3 and the fact that the integrated

weighted Gaussian process follows a normal distribution.

Remark. A transformation of the expression for Ω might simplify its estimation. Notice

that ∫
T
Ṁ(z; θ0)BΓEΛ(dz; θ0) =

√
n

∫
T
M̄n(z; θ0)Ṁ(z; θ0)EΛ(dz; θ0) + op(1)

and

√
n

∫
T
M̄n(z; θ0)Ṁ(z; θ0)EΛ(dz; θ0) =

√
n

∫
T
M̄n(z; θ0)E

∂

∂θ
Λ(z; θ)EΛ(dz; θ0) |θ=θ0

=
√
n

∫
T

∫ T

s∗
E
∂

∂θ
Λ(z; θ)EΛ(dz; θ0)M̄n(ds

∗; θ0) |θ=θ0

=
√
n

∫
T
ψ(s∗)M̄n(ds

∗; θ0)

where

ψ(s∗) =

∫ T

s∗
E
∂

∂θ
Λ(z; θ)EΛ(dz; θ0)

Here, the second equation is the outcome of applying Fubini’s Theorem. Thus,

√
n

(∫
T
Ṁ(z; θ0)Ṁ(z; θ0)

⊤EΛ(dz; θ0)
)
(θ̂n − θ0)

d→ N(0, C)

where C is a k × k matrix with entries

Cij =

∫
T
ψi(z)ψj(z)EΛ(dz; θ0)

14



Notice that ψ(s∗) can be estimated by

ψ̂(s∗) =

∫ T

s∗

∂

∂θ
Λ̄n(z; θ)N̄n(dz) |θ=θ̂=

1

Nn

∑
l:sl>s∗

∂

∂θ
Λ̄n(sl; θ) |θ=θ̂

where Nn and sl are the number of events and event times of the average process N̄n((0, τ ]),

respectively. Similarly, Cij is estimated by

Ĉij =

∫
T
ψ̂i(z)ψ̂j(z)N̄n(dz) =

1

Nn

Nn∑
l=1

ψ̂i(sl)ψ̂j(sl)

The term
(∫

T Ṁ(z; θ0)Ṁ(z; θ0)
⊤EΛ(dz; θ0)

)
can be estimated in the same way, and hence,

its estimation expression is omitted here.

4.2 Simulation Studies

I use three data generating processes (DGPs) to study estimators’ finite sample perfor-

mance. The specifications are:

1. tij = exp
(
−β
∑j−1

k=1 tik

)
νiuij , with β = −0.15, and νi ∼ U(1.25, 3.5)

2. tαij = exp
(
−β
∑j−1

k=1 tik

)
νiuij , with α = 0.5, β = −0.05, and νi ∼ U(1.25, 3.0)

3. tαij = exp
(
−βti(j−1)

)
νiuij , with α = 1.25, β = 1.65, and νi ∼ U(4.25, 9.0)

I use the standard exponential error term uij ∼ EXP (1) in all DGPs. For each DGP, I run

200 replications. The sample size is set at n = 100(200). Because of the intrinsic dynamic

structure of each DGP, the terminating times are specified as

1. DGP1: τ = 3500(5000)

2. DGP2: τ = 3500(5000)

3. DGP3: τ = 10(15)

The simulation algorithm is documented in Appendix C, the first difference transformation

is used to cancel νi, and new counting processes are constructed for estimation. Tables

1-3 report the results. I also plot the estimated density function (kde estimation) of these

estimators. Figures can be found in Appendix D.

Insert Tables 1 to 3
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5. An Empirical illustration

I apply the proposed method to studying the dynamic mechanism of an individual’s work

absence decisions. This application concerns how the absence score would affect a worker’s

absence decisions. These decisions include the decision to apply for an absence, which

is measured by the working duration and the decision to return to work after an absence,

measured by the absence duration. The inclusion of absence score creates a state-dependent

structure in the econometric models. The absence score is calculated as the accumulation

of absence days and is linked to job benefits. One could reasonably assume that workers

should have arranged their absence decisions dynamically. Another state dependent effect

would be the duration effect: The longer one stays in a state (working or absence), the more

(or less) likely one is to continue to stay in such a state.

Work absences are not uncommon in both developed and developing countries. U.S.

Bureau of Labor Statistics (2005) data reveals that, on any given day, approximately 3.3%

of the U.S. workforce does not report to work. Duflo et al. (2012) reports the absence rate

in an Indian NGO teacher program could be as high as 35%. Moreover, work absences are

costly for both workers and firms. For workers, although the social security covers illness-

related absences in some countries in the form of sick pay, the replacement rates are, in

general, less than 100%. For firms, arguably, labor costs are the single most considerable

budgetary expense. Fister-Gale (2003) cites research showing that absenteeism costs in

one survey population accounted for as high as 14.3% of the total payroll. Early works by

Allen (1981) and Barmby et al. (1991) demonstrate the importance of financial aspects in

explaining absence behavior. A group of Norwegian economists contribute significantly to

this field. Markussen et al. (2011) shows that employee heterogeneity drives most cross-

section variation in absenteeism. Fevang et al. (2014) show that Norway’s social security

system of short-term pay liability creates a sick pay trap: firms are discouraged from letting

long-term sick workers back into work. Applied psychologists and management specialists

contribute most to the work absenteeism literature. In general, psychological literature ar-

gues, according to Steers and Rhodes (1978), that job dissatisfaction represents the primary

cause of absenteeism. In management literature, however, this view has been challenged.

Increased understanding of the importance of so-called trigger absence behavior has emerged

from the management literature (Steel et al., 2007). These literatures argue that absence

score is a significant work absence decision-making factor. However, no satisfied empirical

work has been done to support this claim.

5.1 The Data

The data in this application is obtained from a UK-based manufacturing firm who

produced a homogeneous product. Other publications that use the same data (or a subset

of the data) are Barmby et al. (1991) and Barmby et al. (1995). The data consists of detailed
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absence records: the beginning and ending dates of absences, types of absences (sick-leave,

maternity release, jury service, work accident etc.) as well as individual characteristics. I

use the data from the calendar year 1987 to 1988. In total, there are 749 workers with

5718 absence records. Figure 1 shows the histogram distribution of the length of absences.

Among all the absences, one-day off leaves account for more than half. Absences longer

than 5 days are rare.

Insert Figure 1

The firm has introduced an experience-oriented absence policy. In general, workers with

lower cumulative absence scores will receive a better sick-leave benefit, but all employees are

entitled to receive the government statutory sick-pay (SSP) benefit if they meet the criteria.

Workers are categorized into three groups: Grade A workers are paid with their full wage

(including bonuses) less the SSP, Grade B workers are paid with their basic wages less SSP,

and Grade C workers receive no benefits from the firm. Each day of absence attracts a

certain number of ‘points’, mostly 1 point, depending on the cause of this absence. To

simplify the analysis, I assume that one day-off represents a 1 point of absence score. The

firm’s regulation states that Grade A workers have less than 21 points, Grade B workers have

21 to 41 points, and Grade C workers are those above 41 points. Workers are categorized

into these three grades based on their absence records over the previous two years.

There is no abnormal behavior around the cut-off points 21 and 41. To show this, I

non-parametrically estimate the absence score density function at the end of the years 1987

and 1988. Figure 2 plots the result. The P.D.Fs are smooth around these cut-off absence

scores. Some possible explanations to this smoothness could be 1) It is difficult to foresee

the occurrence of a future absence, 2) the absence regulation renews every two years, and

last year’s absence records (1988) that determine 1989’s sick pay benefit are also the records

to determine the benefit for 1990; hence the absence score is updated in a ’smooth’ way, and

3) the absence score will affect only the sick-pay benefit (which is stochastic: only receive

the benefit when ill), but not the salary (which is deterministic), hence the incentive to

‘control’ the absence scores around the cut-off points are not strong.

Insert Figure 2

5.2 An Econometric Model for Work Absences

I focus on modeling the working process (i.e., ‘ask for a leave’ decisions), the absence

process (i.e., ‘return to work’ decisions) model shares the identical structure up to parame-

ters and hence will be omitted in description. Figure 3 illustrates one possible work absence

record.

Insert Figure 3
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Here, solid lines are working durations {tij} and dashed lines are absence durations {t̃ij}.
Some words on the absence process are in order. I distinguish absences by their duration

length: Recall, a worker is eligible to receive the government SSP benefit if the sick-leave

duration is longer than three days. Any absence is a long-term absence if it lasts more than

three days, and an absence is a short-term absence if it lasts within three days. Almost

all the long-term absences in the data-set are associated with sick-leaves, while most short-

term absences are nonmedical. Modeling the short-term absence duration is not a primary

interest for two reasons. First, from the perspective of management, it is more important to

understand the frequency of short-term absences rather than to understand their duration

lengths. Second, from the perspective of modeling, since short-term absences can only last

one, two or three days, a multinomial framework is better suited. Importantly, there is no

distinction between short and long-term absences in the ‘ask for a leave’ model. This is

because when a worker is making such decisions, s/he is unable to determine the precise

length of the absence duration due to incomplete information. For example, the cause of

a headache may be the lack of rest or a serious illness, but a worker can hardly know the

true cause prior alone.

The working duration model shares a similar specification with the one mentioned in

Example 1 :

Tα+1
ij = (α+ 1) exp(βxij − ηi)uij

where ηi is an individual’s unobserved heterogeneity, uij
i.i.d∼ EXP (1), and α measures the

duration dependence. xij is the absence score before j−th absence, xi0 = 0, xij =
∑j−1

k=1 t̃ik.

Since

s =

j∑
k=1

tik +

j−1∑
k=1

t̃ik

is a calendar time, xij can also be constructed using working durations: xij = s−
∑j

k=1 tik,

i.e., xij ∈ Fi(s−), and Fi(s) = σ
(
{tik}k=1,...,j , {t̃ik}k=1,...,j−1

)
.

Counting processes {Ni}i=1,...,n consisting of {tij}i=1,...,n;j=1,...,ni as well as their cumu-

lative intensity functions {Λi}i=1,...,n can be constructed. After a first difference transfor-

mation, a vector of minimum distance estimators could be obtained.

5.3 Main Results

Table 4 presents the main results. Column (1) reports the state dependent effects of

pooled attendance duration, where I do not distinguish short and long-term absences. Both

duration dependent and absence score effects are significant. A positive duration dependence

is observed: The previous absence is more likely to trigger the next one if they are far away

from each other. This result is consistent with the standard labor-leisure theory.

Insert Table 4
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The cause of an absence obviously plays a significant role in the decision-making process.

I investigate how individuals react to the absence score if they have high confidence that

the cause of an absence is related to a health issue. Notice that almost all the long-term

absences in our data are related to health problems. Absences that follow immediately

these long-term recoveries might be related to health issues. A typical example of such an

absence could be the medical re-check. Column (2) of table 4 studies these ‘ask for a leave’

decisions, and the results indicate that both duration dependence and the absence score

coefficient are no longer significant: The dynamic effects will be irrelevant when workers

know (or at least they thought they knew) the causes of absences are health related.

Column (3) reports the results of long-term absence duration. Again, one observes a

positive duration dependence: The longer one stays in absence, the more likely she/he is

going to return to work. However, individuals do not respond to the absence score. This

result is consistent with the conclusion before: Long-term absences are sick-leaves and

when it comes to health issues, the absence score is no longer relevant. This also implies

that one might assume that long-term recovery durations are i.i.d, and could reconsider a

conventional duration model for long-term recoveries.

6. Related Topics and Discussion

In this section, I discuss some related topics, including estimating time-invariant covari-

ates, estimating count statistics through a parametric bootstrap, a structural interpreta-

tion for a multi-state duration model, and problems when using likelihood-based estimation

methods.

6.1 Estimating Time-invariant Covariates

In the model specification, observed heterogeneities are absorbed in the unobserved in-

dividual effect νi. The constructed counting process after the first difference transformation

does not contain any time-invariant effect. One can, nevertheless, study these hetero-

geneities by focusing on one particular subset of data, where the state dependent elements

are not present. One then can use Heckman and Singer’s Non-Parametric Maximum Likeli-

hood (NPML) method to estimate a conventional single spell duration model. In the work

absence application, I use the initial duration of newly hired workers to estimate individual

heterogeneity effects. The results are presented in Appendix D. One caveat of this strategy

is that one must assume that these time-invariant effects are the same in both the initial

duration and the subsequent duration.
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6.2 Estimating Count Statistics

Since there is no closed form expression for (conditional) probabilities of Ni(τ) = m,

estimating count statistics by bootstrap might be a reasonable approach. In this subsection,

I propose a parametric bootstrap procedure.

Suppose a GAFT model is specified and estimated using the methods mentioned before,

and one obtain estimators θ̂ = θ0 + op(1) for parameters of time-dependent covariates. The

goal is to estimate count probabilities and statistics conditional on a given history up to

si1 = ti1, i.e., the occurrence time for the first event.

Preliminary: Random Time Change Theorem. One can use the cumulative intensity

to transform the original event times {sij}j≥1 to another sequence of event times {ζij}j≥1

to form a homogeneous Poisson process with unit intensity. Equivalently, the original non

i.i.d durations {tij}j≥1 can be transformed into new durations {wij}j≥1, wij = ζij − ζi(j−1),

which are i.i.d EXP (1), see Daley and Vere-Jones (2007). The time transformation is given

by:

ζij = Λi(sij ; θ0), ζi0 = 0

the associated transformed durations wij are given by

wij = ζij − ζi(j−1) = Λi(sij ; θ0)− Λi(si(j−1);θ0)

Denote Ñi, Λ̃i a counting process and its cumulative intensity function after one performs

the first difference transformation to the original data. Given information si1 = ti1, the

bootstrap algorithm is:

1. Generate a w∗
ij from EXP (1) distribution, the bootstrap transformed event time is

updated by ζ∗ij = ζ∗i(j−1) + w∗
ij , and consequently, the event times s̃ij in the counting

process Ñi is constructed by s̃ij = Λ̃−1
i (ζ∗ij ; θ̂)

2. Calculate the duration ∆L̃(tij) = s̃ij − s̃i(j−1), and generate the original duration tij

by

tij = L̃−1(s̃ij − s̃i(j−1) + L̃(ti(j−1)))

3. Update the original event time by

sij = si(j−1) + tij

Repeat Steps 1-3 if sij < τ , and stop the procedure otherwise. Repeat the bootstrap B

times, and for k-th iteration, denote nki = Ni(τ), the number of events occurred before the

terminal time τ . One can estimate the following count probabilities and statistics:

• P̂r{Ni(τ) = m|Fi(ti1)} =
∑B

k=1 I{nki = m}/B

• Ê (Ni(τ)|Fi(ti1)) =
∑B

k=1 n
k
i /B
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6.3 A Structural Interpretation for a Multi-State Duration Model

In a multi-state duration model, an individual would transit from one state to another

state in a continuous time setup. For example, in the work absence application, a worker

exists a working period and enters into an absence period by asking for leave. Here, I show

that the reduced form of such a model can be specified as a GAFT model. The strategy

presented here simplifies the interdependent duration model of Honor and De Paula (2010);

Honoré and de Paula (2018) and is in line with the classical repeated search model in which

an individual would compare utilities in two states, see Mortensen (1986) for a review. The

transition time from state A to state B depends solely on the difference in the discounted

future utilities between these two states. The levels of utilities do not matter.

Let 0 ≤ Ki1 < Mi1 < Ki2 < Mi2 · · · ,Kij ,Mij ∈ (0, τ ], where {Kij}j≥1 and {Kij}j≥1 are

the random variables representing beginning times of corresponding states. For example,

Kij could be the starting date of jth employment, while Mij is the starting date of jth

unemployment. Fix any j = 1, 2, . . . , ni, conditional on information up to time ki(j−1), the

utility of an individual i, who chooses to switch from one state to another state at a time

Mi(j−1) is ∫ Mi(j−1)

ki(j−1)

νiuije
−ρzdz +

∫ E(Kij)−Mi(j−1)

Mi(j−1)

L(z)G(xij)e
−ρzdz

or ∫ Ti(j−1)

0
νiuije

−ρz′dz′ +

∫ E(Kij)−ki(j−1)

Ti(j−1)

L(z′)G(xij)e
−ρz′dz′

where

• Ti(j−1) =Mi(j−1) − ki(j−1) is the duration in state A, E(Kij)− ki(j−1) − Ti(j−1) is the

elapsed time in state B, z′ = z − ki(j−1).

• νi is the unobserved heterogeneity, uij is an i.i.d random variable that represents an

individual’s preference taste in the current state (state A).

• G : R → R+ is a function of the state dependent variable xij and L : R+ → R+

represents the duration dependence.

I normalize the utility flow in state A to be an individual-specific constant rate (uij),and as-

sume the utility flow would discount exponentially at ρ. Finally, the multiplicative structure

for L(z)G(xij) is imposed because I want the resulting model to have a GAFT model.

The first order condition with respect to Ti(j−1) is:

νiuije
−ρT ∗

i(j−1) − L(T ∗
i(j−1))G(xij)e

−ρT ∗
i(j−1) = 0

Thus,

T ∗
i(j−1) = (G(xij))

−1νiuij

which is the GAFT specification.

21



6.4 Likelihood Based Methods are Incompatible

The likelihood-based methods are commonly used in both the duration analysis and

the counting process analysis. However, these methods are incompatible with the data set

studied here. To demonstrate the point, let’s first consider the joint density of event times

(Si1, Si2, . . . , Si(Ni(τ))) of a counting process (or equivalently, the durations):

fSi1,...,Si(Ni(τ))

(
si1, . . . , si(Ni(τ))

)
=exp

{
−
∫ τ

0
λi (t | Fi(t−)) dt

}

×
Ni(τ)∏
j=1

λi (sij | Fi(sij−))

see Kass et al. (2014) for the proof. The events times Si1, Si2, . . . , Si(Ni(τ)) have two sources

of randomness: One is due to the variability described by the point process p.d.f, and the sec-

ond is due to the way Ni(τ) varies. Notice that random variables Ni(τ) and I{Si(Ni(τ)+1) >

τ} contain the same amount of information, while I{Si(Ni(τ)+1) > τ} ∈ Fi(τ). Thus, the

second source of randomness ultimately comes from the variation of Fi(s). Stochastic pro-

cesses like the {Si1, Si2, . . . , Si(Ni(τ))} are called Doubly Stochastic Processes. A doubly

stochastic model can be represented in two stages. In the first stage, the distribution of

the outcome is parametrically specified by a certain density function. At the second stage,

some elements in the density function are treated as being random. One classical doubly

stochastic process is the Cox process, also known as the doubly stochastic Poisson process.

Considering a likelihood contributor conditional on event times {sij}j=1,...,ni from an

individual i:

li =

ni∏
k=1

λi(sik | Fi(sik−))× exp

(
−

ni∑
k=1

∫ sik

si(k−1)

λi(z | Fi(z−))dz

)

× exp

(
−
∫ τ

si(ni)

λi(z | Fi(z−))dz

)
which is also the specification of the joint density of the occurrence times si1, . . . , si(ni) and

the number of occurrences Ni(τ) = ni, see Rubin (1972) for reference.

Using the likelihood function constructed from {li}i=1,...,n would not lead to consistent

estimators, since the likelihood contributors are not identical. One way to obtain identical

likelihood contributors is to fix the number of occurrences across individuals:

L =
∏

i:ni=n∗

ln
∗

i

where ln
∗

i is the likelihood contributor whose number of occurrences is n∗. However, this

practice would lead to both a sample selection problem and a loss of information problem:

Individuals with ni < n∗ would be ignored from the estimation, while individuals with

ni > n∗ would not have their information fully utilized by researchers.
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7. Conclusion

In this paper, I proposed a multiple spell duration model to study a set of duration data

{Tij} where i = 1, . . . , n and for each individual i, j = 1, . . . , Ni. These data are doubly

stochastic: Both the durations {Tij}j≥1 and the number of duration Ni are random for a

fixed observation window. In addition, within each individual, past durations have genuine

effects on the future ones. These state dependent effects hold true after conditional on the

unobserved heterogeneity. I use a counting process approach to construct the multiple spell

duration model for two reasons. First, a counting process fully characterizes the doubly

stochastic structure of the data. Second, a martingale relationship between the process and

its cumulative intensity provides an estimation channel.

More specifically, fix an individual i, I specify a generalized accelerated failure time

(GAFT) structure for each duration. This structure is broad and contains some important

duration models, e.g., the mixed proportional hazard model. It also facilitates a researcher

to perform a first difference transformation to cancel fixed effects. One can construct a

counting process for each individual using his/her duration data. The corresponding (cu-

mulative) intensity function can be written using the GAFT specification. Count proba-

bilities can be specified using modified intensity functions, although such specifications are

expressed through difference-differential equations.

I use the first difference transformation to cancel the fixed effects. Such a transformation

is achievable with some mild restrictions on model specifications. A transformed counting

process is constructed using first differenced durations. The associated (cumulative) inten-

sity can be specified by imposing distribution assumptions on the error term of a GAFT

model.

One can estimate the model by minimizing the distance between the transformed count-

ing process and its cumulative intensity. I re-introduced the minimum distance estimator

proposed by Kopperschmidt and Stute (2013), and provide simplified proofs. I also conduct

simulation studies that employ the first difference transformation.

I use the proposed model to study a work absence application. A worker’s absence

decisions include a decision to ‘ask for a leave’ and a decision to ‘return to work’. These

absence decisions are affected by a worker’s absence score, which depends on his/her past

work absence records. I found that workers will respond to the absence score in general.

Higher absence scores discourage future absence initials. However, this pattern does not

apply to sick-leave absences.

Lastly, some related topics are discussed. These topics include how to estimate time-

invariant covariates, how to estimate count statistics through a parametric bootstrap, and a

structural interpretation of a double-state duration model. I also discuss reasons for which

conventional likelihood-based methods are incompatible with the doubly stochastic data.
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A. Tables and Figures

Table 1: Results of DGP1

N = 100, τ = 3500 True Estimator SD MAD CI95 CI90

β -0.15 -0.166 0.029 0.019 100% 97%

N = 100, τ = 5000

β -0.15 -0.172 0.029 0.018 98.5% 98%

N = 200, τ = 3500

β -0.15 -0.165 0.020 0.013 99% 95.5%

N = 200, τ = 5000

β -0.15 -0.167 0.020 0.011 97.5% 93.5%

* SD stands for the standard deviation of each simulation. MAD is the median ab-

solute deviation. CI95(CI90) is the percentage of the 95%(90%) confidence interval

generated by se that covers the true parameter.

Table 2: Results of DGP2

N = 100, τ = 3500 True Estimator SD MAD CI95 CI90

α 0.5 0.508 0.069 0.058 97% 95.5%

β -0.05 -0.053 0.041 0.024 99.5% 97%

N = 100, τ = 5000

α 0.5 0.531 0.070 0.061 92% 89%

β -0.05 -0.080 0.055 0.027 98.5% 97%

N = 200, τ = 3500

α 0.5 0.512 0.051 0.043 97% 91.5%

β -0.05 -0.054 0.030 0.019 98% 95%

N = 200, τ = 5000

α 0.5 0.519 0.050 0.049 95.5% 91.5%

β -0.05 -0.058 0.030 0.017 100% 99%

* SD stands for the standard deviation of each simulation. MAD is the median ab-

solute deviation. CI95(CI90) is the percentage of the 95%(90%) confidence interval

generated by se that covers the true parameter.

B. Proofs

B.1 Theorem 1

I use Figure 4 to help illustrating the proof. Fix a time t, the value of Λi(s) is:
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Table 3: Results of DGP3

N = 100, τ = 10 True Estimator SD MAD CI95 CI90

α 1.25 1.283 0.137 0.084 100% 99.5%

β 1.65 1.703 0.183 0.102 97.5% 99%

N = 100, τ = 15

α 1.25 1.312 0.109 0.072 99% 96%

β 1.65 1.746 0.152 0.087 99% 94%

N = 200, τ = 10

α 1.25 1.272 0.096 0.061 98.5% 96%

β 1.65 1.697 0.129 0.081 98% 97.5%

N = 200, τ = 15

α 1.25 1.323 0.077 0.047 94.5% 88.5%

β 1.65 1.761 0.107 0.071 92.5% 85.5%

* SD stands for the standard deviation of each simulation. MAD is the median

absolute deviation. CI95(CI90) is the percentage of the 95%(90%) confidence

interval generated by se that covers the true parameter.

Table 4: State-Dependent Effect

pooled attendance sick-related attendance long-term recovery

(1) (2) (3)

α 0.309∗∗∗ 0.053 1.122∗∗∗

(0.071) (0.111) (0.189)

β 0.916∗∗∗ -0.079 -0.063

(0.321) (0.057) (0.097)

Note: Column (1) reports attendance duration results. Column (2) reports the result for sick short-term attendance
duration. Column (3) and (4) report the state-dependent results for short and long-term recovery duration, respec-
tively. α is the duration dependent coefficient, while β is the absence score coefficient. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
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Figure 1: Most frequent absence duration

(a) At the end of 1987 (b) At the end of 1988

Figure 2: Non-parametric P.D.F of absence scores
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Figure 3: Decompose two state process into single state processes

Figure 4: A Possible Realization of a Counting Process and its Cumulative Intensity
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Λi(s) =
5∑

j=1

zij + z̄i6

where

zij = Λi(sij)− Λi(si(j−1)) = Gij(tij), j = 1, . . . , 5, si0 = 0

and

z̄i6 = Λi(s)− Λi(si5)

Here Gij(·) : R+ → R+ are non-decreasing functions. In the figure, tij are complete

duration, t̄i6 is an incomplete duration. Our proof consists of two steps, first, I show that

zij = Hij(tij), where Hij(·) are the corresponding integrated hazard rates of Tij . Second, I

show that z̄i6 = Hi6(t̄i6).

From the randome time theorem, one knowns that zij , j = 1, . . . , 5 are the realizations

of an EXP(1) random variable, thus

P (Zij > x) = P (Gij(Tij) > x) = P (Tij > G−1
ij (x))

and,

1− Fij(G
−1
ij (x)) = exp

(
−Hij(G

−1
ij (x))

)
= exp(−x)

In the above equation, the first equality comes from the relationship between the survival

function and the integrated hazard rate. Thus,

Gij(·) = Hij(·)

zij = Gij(tij) = Hij(tij)

Next, notice that

P (Zi6 > z̄i6) = P (Gi6(Ti6) > z̄i6) = P (Ti6 > G−1
i6 (z̄i6))

thus,

1− Fi6(G
−1
i6 (z̄i6)) = exp(−z̄i6)

Further notice that (as illustrated by the figure)

G−1
i6 (z̄i6) = t̄i6

Hence,

1− Fi6(t̄i6) = exp(−z̄i6)

and

z̄i6 = − log (1− Fij(t̄i6)) =

∫ t̄i6

0
hi6(x)dx = Hi6(t̄i6)
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B.2 Theorem 2

Since
∫
T M(z; θ)2EΛ(dz; θ0) has an unique minimizer at θ = θ0, then, using the theory

of M-estimator, one just need to show uniformly in θ∫
T
M̄n(z; θ)

2N̄n(dt)
a.s→
∫
T
M(z; θ)2EΛ(dz; θ0)

Notice that A2 implies M̄n(s; θ) is continuous in θ. This result holds by applying the

continuous mapping theorem and the fact that N̄n(s), Λ̄n(s; θ) are sample mean of i.i.d

nondecreasing process, a Glivenko-Cantelli argument yields, with probability one, uniform

convergence of N̄n(s), Λ̄n(s; θ) to EN1(s) = EΛ(s; θ0),EΛ1(s; θ), respectively, uniform in s

and compact subsets of Θ.

B.3 Theorem 3

The following Lemma is needed to prove Theorem 3.

Lemma A1. Let θ∗ be a consistent estimator of θ0, then

1

n

n∑
i=1

Ṁi(s; θ
∗)

a.s→ EṀ1(s; θ0)

Proof See Rao (1962)

The first order condition of the minimization problem is

Nn∑
l=1

(
n∑

i=1

Ṁi(sl; θ̂n)

)(
n∑

i=1

Mi(sl; θ̂n)

)
= 0

where in a similar notation, Ṁi(s; θ) = ∂Mi(s; θ)/∂θ. By the mean value theorem, one can

find an estimator θ∗n = γθ̂n + (1− γ)θ0, γ ∈ (0, 1) such that

Nn∑
l=1

(
n∑

i=1

Ṁi(sl; θ̂n)

)(
n∑

i=1

Mi(sl; θ0)

)
+Gn(θ̂n − θ0) = 0

where

Gn =

Nn∑
l=1

(
n∑

i=1

Ṁi(sl; θ̂n)

)(
n∑

i=1

Ṁ⊤
i (sl; θ

∗
n)

)
Therefore

√
n(θ̂n − θ0) = n3G−1

n

(
1

n

Nn∑
l=1

[
1

n

n∑
i=1

Ṁ(sl; θ̂n)

][
1√
n

n∑
i=1

Mi(sl; θ0)

])

= n3G−1
n

∫
T

[
1

n

n∑
i=1

Ṁ(z; θ̂n)

][
1√
n

n∑
i=1

Mi(z; θ0)

]
N̄n(dz)
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Notice that

n3G−1
n =

(
1

n

Nn∑
l=1

(
1

n

n∑
i=1

Ṁi(sl; θ̂n)

)(
1

n

n∑
i=1

Ṁ⊤
i (sl; θ

∗
n)

))−1

=

(∫
T

(
1

n

n∑
i=1

Ṁi(z; θ̂n)

)(
1

n

n∑
i=1

Ṁ⊤
i (z; θ∗n)

)
N̄n(dz)

)−1

thus, by LLN and Lemma A1,

n3G−1
n

a.s→
(∫

T
Ṁ(z; θ0)Ṁ(z; θ0)

⊤EΛ(dz; θ0)
)−1

Similarly, by Lemma A1, 1
n

∑n
i=1 Ṁ(s; θ̂n)

a.s→ Ṁ(s; θ0),∀t ∈ T . Finally, by martingale

CLT, one have

1√
n

n∑
i=1

Mi(·; θ0) ⇒ BΓ(·)

where⇒ denotes weakly convergence, and BΓ is a centered Gaussian process with covariance

structure Γ(s1, s2) = E(M1(s1; θ0)M(s2; θ0)).

Putting everything together, one has the result stated in Theorem 3.

B.4 Lemma 1 and 2

∂

∂θ
Pr{Ni(s) = m|Fi(u)}

= lim
∆→0

1

∆
Pr{Ni(s+∆) = m|Fi(u)} − Pr{Ni(s) = m|Fi(u)}

= lim
∆→0

1

∆
[Pr{Ni(s+∆) = m|Fi(u), Ni(s) = m} − 1] Pr{Ni(s) = m|Fi(u)}

+ lim
∆→0

1

∆
Pr{Ni(s+∆) = m|Fi(u), Ni(s) = m− 1}Pr{Ni(s) = m− 1|Fi(u)}

Recall the definition of λNi(s)(s,Fi(u)), one has the results asserted in Lemma 1. In the

same way, Lemma 2 can be proved.

C. Simulation Algorithm

The Time Rescaling Theorem suggests generating a sequence of EXP (1) random vari-

ables and then back-transforming to get the desired counting process. The following is

the algorithm for generating a process on the interval (0, τ ] with conditional intensity

λi(t | Fi(t−)):

1. Initialize si0 = 0 and j = 1.
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2. Sample zij from an EXP (1) distribution.

3. Find sij as the solution to

zij =

∫ sij

si(j−1)

λi(t | Fi(t−))dt

4. If sij > τ stop.

5. Set j = j + 1, update the filtration Fi() and go to step 2.

D. Miscellaneous Results

D.1 Simulation Results: Density Functions

The following figures report kernel density estimation results of the simulated studies.

Figure 5: Density Function, DGP1

D.2 NPMLE Results

I specify the hazard rate for such initial duration as

hworking(d) = exp(x⊤i β + ηi)
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Figure 6: Density Function of α̂ , DGP2
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Figure 7: Density Function of β̂ , DGP2
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Figure 8: Density Function of α̂ , DGP3
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Figure 9: Density Function of β̂ , DGP3

38



Table 5: NPMLE Results

Attendance Long-Term Absence

(1) (2)

age -0.056∗∗∗ 0.086∗∗∗

(0.015) (0.012)

age2 0.107∗∗∗ -0.167∗∗∗

(0.032) (0.023)

male 0.002 0.217∗∗∗

(0.138) (0.083)

full time 0.042 0.109

(0.151) (0.087)

marriage 0.052 0.013

(0.208) (0.087)

α – 0.803∗∗∗

– (0.039)

Note: age2 = age2/100, male is a gender indicator with value one if a person is male and zero otherwise, full time is an
indicator with value one if a person holds a full time labor contract, and zero otherwise. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

where νi is the individual unobserved heterogeneity, and xi is a vector of time-invariant

individual attributes including age, sex, full time/ part time job indicator and marriage

status.

Results in Table 4 also suggest that long-term absence durations could be regarded as

i.i.d variables. I specify the following hazard rate:

habsence(t) = tα exp(x⊤i β + ηi)

where t is the long-term absence duration.

Heckman & Singer’s Non-Parametric Maximum Likelihood Estimator (NPMLE) is em-

ployed to estimate the parameters. Table 5 presents results when using the initial attendance

data from the newly-hired workers and the long term absence duration records from the

whole sample.
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