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Abstract

We propose an omnibus goodness-of-fit test for general counting processes. We show our

test is consistent against (almost) any deviation, and can detect local alternatives tending

to the null at a
√
n rate. We contribute to the literature in the following aspects. First,

the test statistic is constructed based on an empirical process rather than a sequence of

transformed event times. Second, we explicitly take the estimation effect into consider-

ation when bootstrapping the critical value. Third, the proposed framework is valid for

both the one-observational counting process as well as the n-observational process. Monte

Carlo experiments results suggest good size and power properties of our test, and a simple

empirical application is also studied.

JEL Classification: C12
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1. Introduction

Let S1, S2, . . . be random variables that represent event times, a counting process N(s):

N(s) =

∞∑
j=1

I{Sj ≤ s}

counts the number of Sj that fall below s. A counting process is uniquely characterized by

its conditional random intensity λ(t) defined as :

λ(s) =
E(dN(s)|F(s−))

ds
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where F(s−) represents a filtration that contains relevant information up to time s. One

might interpret the intensity function as the conditional expectation of the jump size dN(s)

at time s given observed history F(s−). The counting process has been widely used in

finance and economics, e.g., Bacry et al. (2015); Bowsher (2007); Chavez-Demoulin et al.

(2005); Stabile and Torrisi (2010); Swishchuk et al. (2021), in seismology, see Zhuang et al.

(2002) and in criminology, see Mohler et al. (2012).

In this paper, we aim to provide an omnibus goodness-of-fit test for general counting

process models. These include models for one-observational process where researchers only

have data on one observational unit, and models for multiple-observational process where

data from more than one units is available. Conventional goodness-of-fit tests of a counting

process rely on the Random Time Change theorem, where one uses the cumulative inten-

sity to transform the original event times to another sequence of event times to form a

homogeneous Poisson process with unit intensity. The time transformation is given by:

Zj(θ0) =

∫ sj

s(j−1)

λ(t; θ0 | F(t−))dt

= Λ(sj ; θ0|F(sj−))− Λ(s(j−1); θ0|F(s(j−1)−))

(1)

where Λ(s; θ0|F(s−)) =
∫ s
0 λ(u; θ0|F(u−))du is the cumulative intensity function. {Zj} are

i.i.d EXP(1) random variables if the model parameters are evaluated at true values: θ = θ0,

θ ∈ Θ ⊆ Rq. The basic ideas of these goodness-of-fit tests are to check if the estimated

rescaled duration fit the EXP(1) distribution, or if the counting process consisted by the

rescaled duration fit the standard Poisson process.

Daley and Vere-Jones (2007) summarizes one classical algorithm of such tests. The basic

procedures consist of

1. Form the transformed time sequence: S̃i =
∑i

j=1 Zj(θ̂n), where θ̂n is a vector of

consistent estimators.

2. Plot the cumulative step function Y (x) through the points (xi, yi) = (S̃i/τ, i/N(τ))

in the unit square 0 ≤ x, y ≤ 1, where τ is a terminal time.

3. Plot confidence lines y = x± C1−α/
√
τ , where with Φ denoting the standard normal

distribution, Φ(Cp) = p.

4. Implement an approximate 100(1 − α)% test of the hypothesis that the {S̃i} come

from a unit-rate Poisson process by observing whether the empirical process Y (x) falls

outside the confidence band drawn in step 3.

At step 4, this procedure uses the maximum deviation from the expected rate curve to check

for departures. It is analogous to the Kolmogorov-Smirnov test in this context. There are

two sources of approximation. First, it is a large sample test, based on the Brownian motion
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approximation to the Poisson process. Second, and more importantly, it does not consider

for the effect of estimating the parameters from the same data as are used to check the

model. The bias resulting from the latter in moderate-sized data sets may be considerable

and even more severe when the process has strong time-dependence features that reduce

the effective amount of information available in the data, see Schoenberg (2002).

In this study, we build our goodness-of-fit test procedures based on the Doob-Meyer

decomposition:

N(s) = Λ (s; θ0|F(s−)) +M(s; θ0) (2)

where M(s; θ0) is a (local) martingale with mean zero:

M0(s; θ0) = EM(s; θ0) = 0

The Doob-Meyer decomposition implies an empirical process:

√
nM̄n(s; θ0) =

1√
n

n∑
i=1

(Ni(s)− Λi(s; θ0|Fi(s−)))

where the subscript i denotes an observed unit. Our test statistic is based on measuring

the distance to zero of this empirical process. Under the null that the model is correctly

specified, this empirical process will converge weakly to a centered Gaussian process BΓ(t)

with covariance structure given by Γ(t1, t2) = E (M1(t1; θ0)M1(t2; θ0)).

For one-observational process models, we notice that a general counting process consists

of a summation of single-event counting processes {Nj}j≥1. Let Tj = Sj−s(j−1) be a random

variable that represent the waiting time for j−th event, here s(j−1) denotes a realization of

S(j−1). To avoid confusion, we will use T (t) to denote the waiting time and S(s) to denote

the event time. The single-event counting process is defined as:

Nj(s− s(j−1)) = I{Tj ≤ s− s(j−1)}

and let λj(t; θ0) (Λj(t; θ0) ) denote the corresponding (cumulative) intensity function. A

counting process can be re-written as:

N(s) =
∞∑
j=1

Nj(s− s(j−1)) =
∞∑
j=1

I{Tj ≤ s− s(j−1)}

Suppose the underlying process is strongly mixing (i.e., the waiting times {Tj}j≥1 are also

strongly mixing), one can construct a similar empirical process based:

√
nM̄n(t; θ0) =

1√
n

n∑
j=1

(Nj(t)− Λj(t; θ0|F(t−)))

The main challenge here is to write explicitly the estimation effect in
√
nM̄n(t; θ̂n), where

θ̂n is any root-n consistent estimator. In this study, we focus on (1) maximum likelihood
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estimators and (2) minimum distance estimators. Maximum likelihood (ML) based methods

are standard in one-observational models, while for multiple-observational models, minimum

distance (MD) based methods should be employed as ML methods may be invaild. The

MD method is based on a continuum of moment restrictions EM1(t) = 0,∀t ∈ (0, τ ].

Commonly used test procedures, like Kolmogorov-Smirnov and Cramer-von Mises, are

based on proper functionals of the empirical process. In practice, there are three ways of

obtaining critical values of a test: (1) through resampling; (2) through transforming the

empirical process to an appropriate martingale, and (3) through the orthogonal components

in the spectral representation of the underlying empirical process. In this study, we adopt

the first approach and use a multiplier bootstrap procedure to obtain critical values.

The paper is structured as follows. Section 2 studies the empirical process in de-

tail. Specifically, for one-observational process models, we show how to construct the

empirical process from an intensity function. Construction of an empirical process in the

n−observation case is straightforward. Section 3 discusses the proposed test and its asymp-

totic properties. Section 4 proposes the multiplier bootstrap procedure for estimating crit-

ical values, and Section 5 presents Monte Carlo studies. In section 6, we illustrate the test

with a financial application. Finally Section 7 concludes the whole paper.

2. The Empirical Process

2.1 Empirical Process of One-Observation Process

In general, we could specify a parametric counting process model via its intensity func-

tion. For example, in finance, economics and seismology, the Hawkes process (Hawkes,

1971) is well understood and widely applied. Its intensity can be written as:

λ(s | F(s−)) = λ0 +

∫ s

0
g(s− z)dN(z)

= λ0 +
∑

j:sj<s

g(s− sj)

One classical specification for the exciting kernel is g(s) = α exp(−µs). In most cases,

researchers would study an one-observation counting process. For example, in finance, it

is bid or ask times for one stock; in seismology, it is earthquake occurrence times in a

region; in criminology, it is crime events in one area; and in insurance, it is the ruin of

one insurance company. However, this one-observational process can be understood as a

summation of multiple single-event counting processes. As explained in the introduction

section, single-event processes are related to waiting times (or durations). Furthermore, the

intensity function λj(t|Fj(t−)) of a single-event process Nj(t) is a product:

λj(t|Fj(t−)) = hj(t)I{Tj > t}
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of the hazard rate hj(t) and a random process I{Tj > t} indicating whether j−th event is

at risk just before t.

By the construction of N(s), one might argue that its intensity function should be:

λ(s|F(s−)) =
∞∑
j=1

hj(s− s(j−1))I{Sj > s > s(j−1)}

where s − s(j−1) is the duration of j−th event. The following theorem states that this is

indeed the correct specification.

Theorem 1 Given a filtration F(s−) such that σ(N(u) : u < s) ⊆ F(s−), the cumulative

intensity function Λ(s|F(s−)) of N(s) is given by:

Λ(s|F(s−)) = Λ(s(j−1)|F(s(j−1)−))

+

∫ s

s(j−1)

hj(u− s(j−1))I{Sj > u > s(j−1)}du

Proof See Appendix A

Thus, the cumulative intensity functions of single-event processes can be derived by:

Λj(t|Fj(t−)) = Λ(s|F(s−))− Λ(s(j−1)|F(s(j−1)−))

Let Fb
a = F((a, b]) = σ(N(s) : a < s ≤ b) be the σ−algebra generated the counting

process on the interval (a, b]. Define

αN (r) = sup
s∈R

α(Fs
−∞,F+∞

s+r )

where

α(A,B) = sup{|Pr(A ∩B)− Pr(A) Pr(B)|;A ∈ A, B ∈ B}

is the Rosenblatt’s strong mixing coefficient. A counting process N(s) is said to be strongly

mixing if αN (r) → 0 as r → ∞. Intuitivly, the strong mixing condition conveys that the

dependence between past and future events decreases uniformly to zero as the time gap

between them increases.

Theorem 2 Suppose the underlying counting process is strongly mixing, then the empirical

process,
√
nM̄n(t; θ0) =

1√
n

n∑
j=1

(
Nj(t)− Λj(t; θ0|Fs−

sj−1
)
)

converges weakly to a centered Gaussian process BΓ(t) with covariance structure described

as

Γ(t1, t2) = E (M1(t1; θ0)M1(t2; θ0))
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Proof See Ivanoff (1982).

Particularly, the strong mixing properties for a Hawkes process is studied in Cheysson

and Lang (2020).

2.2 Empirical Process for n-Observation Processes

In many empirical studies, an individual’s decision or activity records can be presented

as a counting process. For example, the individual outpatient activities might consist of

a counting process, where each point in this process represents a date of an outpatient

consumption. In these situations, a researcher observe a dataset of durations {tij}, i =

1, . . . , n and for each individual i, j = 1, . . . , ni, within a fixed time interval T = (0, τ ]. Let

yi = {tij}j=1,...,ni be the observations for an individual, we assume that yi are i.i.d copies

of Y in the sense that individuals are independent and idenetically distributed according

to the finite dimensional distribution PY
t1,...,tk

(A) = P{ω ∈ Ω|(yt1(ω), . . . , ytk(ω)) ∈ A} for

k ∈ N.
For an individual i, let {Sij =

∑j
k=1 Tik} be random variables that represent the event

times. a counting process is constructed as:

Ni(s) =
∞∑
j=1

I{Sij ≤ s}

The corresponding empirical process for this n-observation processes data is

√
nM̄n(s; θ0) =

1√
n

n∑
i=1

(Ni(s)− Λi(s; θ0|Fi(s−)))

where σ(Ni(z) : z < s) ⊆ Fi(s−) is individual i’s filtration up to time s.

A few words on the dataset {tij}i,j are in order. For an individual, both durations

tij and the number of events ni are random. Although this data structure is similar to

that of an unbalanced panel data, the source of this unbalanceness is different. None of the

conventional reasons, like rotating, randomly missing data, pooling cross-sectional and time-

series data, nonresponsive, censoring or selection bias, see Baltagi and Song (2006); Hsiao

(2014) for references, is the source for the randomness of ni. Rather, it is the underlying

data generating process (described by Λi(s)) that makes ni vary across individuals.

3. Goodness-of-Fit Test of Counting Process

We are interested in testing the null hypothesis

H0 : M0(s; θ0) = 0, s ∈ T , a.s., (3)
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against the alternative:

H1 : P (M0(s; θ0)) < 1 (4)

We propose a martingale-based test statistic

Tn = n

∫
s∈T

(
N̄n(s)− Λ̄n(s; θ̂n)

)2
N̄n(ds) (5)

We will show in this section that tests based on Tn is omnibus and takes into account

the estimation effect. However, depending on estimators, the asymptotic behaviors of Tn

are different.

3.1 ML Estimators

For a stationary counting process, Rubin (1972) has written its log-likelihood function

as:

logL(s1, s2, . . . , sn; θ) = −
∫
T
λ(s; θ)ds+

∫
T
log λ(s; θ)dN(s) (6)

Note that the Rubin’s log-likelihood is defined under the assumption that the occurrence

times s1, s2, . . . , sn are observed from the beginning of the process, i.e. the time zero, and the

log-likelihood is given at the time τ ≥ sn. However, in most applications, only s1, s2, . . . , sn

are given and τ is not specified. Thus, we assume τ = sn in the rest of the paper. Thus,

logL(s1, s2, . . . , sn; θ) =

n∑
j=1

log bj(θ)

where log bj(θ) = log λ(sj ; θ)−
∫ sj
sj−1

λ(u; θ)du

The linear representation of the ML estimator θ̃n is

√
n
(
θ̃n − θ0

)
=

1√
n

n∑
j=1

− 1

n

n∑
j=1

∂2

∂θ∂θ⊤
log bj(θ)|θ=θ0

−1

log ḃj(θ0) + op(1)

=
1√
n

n∑
j=1

l(sj ; θ0) + op(1)

(7)

where

• log ḃj(θ) =
∂
∂θ log bj(θ)|θ=θ

• l0 = El(S1; θ0) = 0

• Ω = E(l(S1; θ0)l(S1; θ0)
⊤) exists.

One can then expand the empirical process as:

√
nM̄n(t; θ̃n) =

√
nM̄n(t; θ0) + Ṁn(t; θ0)

⊤ 1√
n

n∑
j=1

l(sj ; θ0) + op(1)

where

Ṁn(t; θ0) =
∂

∂θ
M̄n(t; θ) |θ=θ0
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3.1.1 Behavior of Tn Under the Null Hypothesis

We first study the behavior of
√
nM̄n(t; θ̃n) under the null. By standard functional

central limit theorem, we have
√
nM̄n(t; θ0) ⇒ BΓ(t), where BΓ denotes a centered Gaussian

process with covariance structure given by

Γ(t1, t2) = E(M1(t1; θ0)M1(t2; θ0))

In addition, by standard central limit theorem, 1√
n

∑n
j=1 l(sj ; θ0) will converge in distri-

bution to a normal distribution with covariance matrix Ω. Thus, we have the following

proposition:

Proposition 3 Under the null hypothesis and regular conditions,

√
nM̄n(t; θ̃n) ⇒ BΦ(t)

where BΦ(t) is a centred Gaussian process with covariance structure:

Φ(t1, t2) = Γ(t1, t2) + Ṁ0(t1; θ0)E (M1(t1; θ0)l(S1; θ0))

+ Ṁ0(t2; θ0)E (M1(t2; θ0)l(S1; θ0))

+ Ṁ0(t1; θ0)
⊤ΩṀ0(t2; θ0)

and

Ṁ0(t; θ0) = ∂M0(t; θ)/∂θ|θ=θ0

is a k × 1 vector.

Corollary 4 Under the null hypothesis and regular conditions,

Tn ⇒
∫
T
BΦ(u)

2EΛ1(du; θ0)

3.1.2 Behavior of Tn Under the Alternative Hypothesis

In this subsection, we consider both fixed alternatives and local alternatives. For fixed

alternatives,

H1 : P (M0(t; θ) = 0) < 1 (8)

some assumptions are needed.

• B1. θ̃n
a.s→ θ1.

• B2. Mi(t; θ), i = 1, 2, . . . is continuous at θ1 for each s and either B2.1 or B2.2 holds:

∀θ ∈ N1 neighborhood of θ1

– B2.1 ∃k(·) such that |Mi(s; θ)| < k(s) and Ek(S) < ∞.
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– B2.2 ∃k(·) such that |Mi(s; θ)−Mi(s; θ1)| ≤ k(s)|θ − θ1| and Ek(S) < ∞.

Assumptions B1-B2 are similar to Assumption B of Domı́nguez and Lobato (2015). Under

these assumptions and H1, it is straightforward to show that the proposed test is consistent.

We can then state trivially the following proposition that establish the consistency of

the proposed test.

Proposition 5 Under the alternatives H1 and assumptions B1-B2, we have

Tn

n

p→
∫
T
M0(u; θ1)

2EΛ1(du; θ1) ̸= 0

and consequently, as n → ∞,

P (Tn > ϖ) → 1

, for all ϖ ∈ R+.

Next, we consider local alternatives:

H1,n : M0(t; θ0) =
Eg1(t)√

τ
=

g0(t)√
τ

or equivalently

H1,n : EΛ1(t; θ0) = EΛo
1(t; θ0) +

g0(t)√
τ

H1,n : Λ(s; θ0) = Λo(sj−1; θ0) +

∫ s

sj−1

λo(u; θ0)du+

∑j−1
k=1 gk(tk)√

τ
+

gj(s− sj−1)√
τ

where g0(t) is a nonstochastic differentiable function, and Λo
1(t; θ0) and Λo(s; θ0) are the

cumulative intensities of the single-event process and the whole counting process under the

null. Furthermore, we impose that

• limτ→∞
√
n√
τ
= ζ

Under H1,n the linear representation of
√
n(θ̃n − θ0) now has the component

l∗(sj ; θ0) =

− 1

n

n∑
j=1

∂2

∂θ∂θ⊤
log b∗j (θ)|θ=θ0

−1

log ḃ∗j (θ0)

where

b∗j (θ0) =

(
λo(sj ; θ0) +

∑j
k=1Gk(tk)√

τ

)
exp

(
−
(
Λo(sj)− Λo(sj−1) +

Gj(tj)√
τ

))
and

log b∗j (θ0) = log bj(θ0) + qj,δ(θ0)
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with Gk(t) = dgk(t)/dt, and where

log ḃ∗j (θ0) =
∂

∂θ
log b∗j (θ)|θ=θ0

qj,δ(θ0) =

∑j
k=1Gk(tk)

δ

(
λo(sj ; θ0) +

∑j
k=1 Gk(tk)√

τ

)
+ (1− δ)λo(sk; θ0)

− Gj(tj)√
τ

, δ ∈ (0, 1)

Note that

log ḃ∗j (θ0) = log ḃj(θ0) + q̇j,δ(θ0)

where q̇j,δ(θ0) = ∂qj,δ(θ)/∂θ|θ=θ0

Since the estimator θ̃n that maximizes
∑n

j=1 log bj(θ) also maximizes
∑n

j=1 log b
∗
j (θ).

We have,

Proposition 6 Under H1,n,

θ̃n
p→ θ0

Proposition 7 Under H1,n,

√
n
(
θ̃n − θ0

)
d→ N((I∗)−1q̇0,δ(θ0), (I∗)−1)

where

q̇0,δ(θ0) = Eq̇1,δ(θ0)

and

I∗ = E
(
− ∂2

∂θ∂θ⊤
log b∗j (θ)|θ=θ0

)
Finally, let Vj(t; θ) = Mi(t; θ)− gj(t)/

√
τ , ḡn(t) =

∑n
j=1 gj(t)/n, then under H1,n,

√
nM̄n(t; θ̃n) =

√
nV̄n(t; θ0) +

√
n√
τ
ḡn(t) + Ṁn(t; θ0)

⊤ 1√
n

n∑
j=1

l∗(sj ; θ0) + op(1)

and
√
nV̄n(t; θ0) ⇒ BΓ(t).

Proposition 8 Under H1,n,

√
nM̄n(t; θ̃n) ⇒ BΦ∗(t) + Ṁ0(t; θ0)

⊤ (I∗)−1 q̇0,δ(θ0) + ζg0(t)

= BΦ∗(t) + C(t)

Tn ⇒
∫
T
(BΦ∗(u) + C(u))2 EΛ1(du; θ0)
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where BΦ∗(s) is a centred Gaussian process with covariance structure:

Φ∗(t1, t2) = Γ(t1, t2) + Ṁ0(t1; θ0)
⊤E (V1(t1; θ0)l

∗(S1; θ0))

+ Ṁ0(t2; θ0)
⊤E (V1(t2; θ0)l

∗(S1; θ0))

+ Ṁ0(t1; θ0)
⊤Ω∗Ṁ0(t2; θ0)

with Ω∗ = E(l∗(S1; θ0)l
∗(S1; θ0)

⊤)

Proposition 8 points out that Tn converges to a different limit underH1,n except when C = 0.

In such case, the limit distribution under H0 and H1,n is the same and Tn cannot detect the

deviation from H0. The case of C = 0 occurs only when Ṁ0(t; θ0)
⊤ (I∗)−1 q̇0,δ(θ0)+ζg0(t) =

0.

3.2 MD Estimators

Maximum likelihood methods might be invalid when one is given multiple-observational

processes data (See Li (2022) for a detailed discussion). The Doob-Meyer decomposition,

on the other hand, suggests a continuum of moment restrictions:

M0(s; θ0) = 0, a.s

for an unique value θ0 = Θ, where Θ ∈ Rk is the parametric space. θ0 is also the unique

value minimizing

Q(θ) =

∫
T
M0(s; θ)

2EΛ1(ds)

Hence, θ0 = argminθ Q(θ) is a minimum distance parameter. For a sample of size n, let the

sample analogs of M0(s; θ) and Q(θ) be

M̄n(s; θ) = N̄n(s)− Λ̄n(s; θ)

and

Qn(θ) =

∫
T
M̄n(s; θ)

2N̄n(ds)

The minimum distance estimator is defined by

θ̂n = argmin
θ∈Θ

Qn(θ)

Under Assumptions A1-A6 (see Appendix B), Kopperschmidt and Stute (2013); Li (2022)

have shown that

θ̂n
p→ θ0

and

√
n(θ̂n − θ0)

d→
(∫

T
Ṁ0(s; θ0)Ṁ0(s; θ0)

⊤EΛ1(ds; θ0)

)−1 ∫
T
Ṁ0(s; θ0)BΓ(s)EΛ1(ds; θ0)
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3.2.1 Behavior of Tn Under the Null Hypothesis

In order to derive the asymptotic null distribution of Tn, we consider first the behavior

of M̄n(s; θ̂n) under H0.

Decomposing
√
nM̄n(s; θ̂n) we have:

√
nM̄n(s; θ̂n) =

√
nM̄n(s; θ0)−

√
n
(
Λ̄n(s; θ̂n)− Λ̄n(s; θ0)

)
where

√
n
(
Λ̄n(s; θ̂n)− Λ̄n(s; θ0)

)
= −

(
∂Λ̄n(s; θ0)

∂θ
|θ=θ0

)⊤√
n(θ̂n − θ0) + op(1)

= Ṁn(s; θ0)
⊤√n(θ̂n − θ0) + op(1)

= Ṁn(s; θ0)
⊤
(∫

T
Ṁ0(s; θ0)Ṁ0(s; θ0)

⊤EN(ds)

)−1√
n

∫
T
M̄n(s; θ0)Ṁ0(s; θ0)EN(ds) + op(1)

= Ṁn(s; θ0)
⊤
(
1

n
Ṁn(θ0)

⊤Ṁn(θ0)

)−1( 1√
n
Ṁn(θ0)

⊤M̄n(θ0)

)
+ op(1)

Let Nn = nN̄n(τ) denote the number of the pooled events. Ṁn(θ0) is a Nn × k matrix

whose j-th row is the 1×k vector Ṁn(sj ; θ0)
⊤. Similarly, M̄n(θ0) is a Nn×1 vector consists

of M̄n(s1; θ0), . . . , M̄n(sNn ; θ0). The third equality comes from Theorems 2 and the linear

representation of
√
n(θ̂n − θ0). The last equality arises from the law of large number.

Let Wn be an operator such that

Wnr(s) = r(s)− Ṁn(s; θ0)
⊤
(

1

Nn
Ṁn(θ0)

⊤Ṁn(θ0)

)−1
 1

Nn

Nn∑
j=1

Ṁn(sj ; θ0)
⊤r(sj)


NoteWn projects r(s) into the orthogonal space of Ṁn and hence, it is a continuous operator.

We could re-write
√
nM̄n(s; θ̂n) as

√
nM̄n(s; θ̂n) = Wn

√
nM̄n(s; θ0)

Since,
√
nM̄n(s; θ0)

d→ BΓ(s), and Wn
p→ W , where W is the projection operator defined

by

Wr(s) = r(s)−Ṁ0(s; θ0)
⊤
(∫

T
Ṁ0(s; θ0)Ṁ0(s; θ0)

⊤EΛ1(ds; θ0)

)−1 ∫
T
Ṁ0(s; θ0)

⊤r(s)EΛ(ds; θ0)

Then

Proposition 9 Under the null hypothesis and Assumptions A1-A6,

√
nM̄n(s; θ̂n)

d→ WBΓ(s) = BΨ(s)

12



The corresponding covariance structure is:

Ψ(s1, s2) = Γ(s1, s2)− Ṁ0(s1; θ0)
⊤Σ−1

ṀṀ⊤Σ
⊤
Ṁ⊤Γ

(s2)− ΣṀ⊤Γ(s1)Σ
−1
ṀṀ⊤Ṁ0(s2; θ0)

+ Ṁ0(s1; θ0)
⊤Σ−1

ṀṀ⊤ΣΣ
−1
ṀṀ⊤Ṁ0(s2; θ0)

where

ΣṀṀ⊤ =

∫
T
Ṁ0(s; θ0)Ṁ0(s; θ0)

⊤EΛ1(ds; θ0)

ΣṀ⊤Γ(s) =

∫
T
Ṁ0(u; θ0)

⊤Γ(u, s)EΛ1(du; θ0)

Σ =

∫
T
Ṁ0(u; θ0)Γ(u, v)Ṁ0(v; θ0)

⊤EΛ1(du; θ0)EΛ1(dv; θ0)

Corollary 10 Under the null hypothesis and Assumptions A1-A6,

Tn
d→ T =

∫
s∈T

BΨ(s)
2EΛ1(ds; θ0)

3.2.2 Behavior of Tn Under the Alternative Hypothesis

We next discuss the asymptotic behavior of Tn under different alternative hypotheses.

We first study its behavior under any fixed alternatives.

Proposition 11 Under Assumptions H1, B1 and B2, and as n → ∞,

P (Tn > ϖ) → 1

, for all ϖ ∈ R.

Next, we consider the behavior under local alternatives. Specifically, we consider this

sequence of local alternatives:

H1,n : Mi(s; θ0)−
gi(s)√

n
= 0,∀s ∈ T , i = 1, 2, . . . , n

We assume that

• C1: The nonstochastic function g(t) = Eg1(s) < ∞, ∀s ∈ T .

This assumption is standard in the literature, e.g., Domı́nguez and Lobato (2015).

Let ḡ(s) = 1/n
∑n

i=1 gi(s), and V̄n(s; θ) = M̄n(s; θ)− ḡ(s)/
√
n, then under H1,n, we have

M̄n(s; θ) = M̄n(s; θ)− M̄n(s; θ0) + V̄n(s; θ0) +
ḡ(s)√
n

By Assumptions A1-A6 and C1, as well as the Glivenko-Cantelli argument, we have

M̄n(s; θ)
a.s→ M(s; θ)−M(s; θ0)

13



Hence, ∫
s∈T

(
N̄n(s)− Λ̄n(s; θ̂n)

)2
N̄n(ds)

a.s→
∫
s∈T

(M(s; θ)−M(s; θ0))
2 EΛ(ds; θ0) (9)

Notice that θ0 still minimizes the r.h.s of equation 9. Thus

Proposition 12 Under H1,n and assumptions A1-A3, and C1

θ̂n
a.s→ θ0

We then study the asymptotic normality property of θ̂n under H1,n. Notice that the local

linear asymptotic expansion of
√
n(θ̂n − θ0) now becomes:

√
n(θ̂n − θ0) = −

(∫
t∈T

Ṁn(s; θ̂n)Ṁn(s; θ
∗
n)

⊤N̄n(ds)

)−1√
n

∫
t∈T

Ṁn(s; θ̂n)M̄n(s; θ0)N̄n(ds)

= −
(∫

t∈T
Ṁn(s; θ̂n)Ṁn(s; θ

∗
n)

⊤N̄n(ds)

)−1√
n

∫
t∈T

Ṁn(s; θ̂n)V̄n(s; θ0)N̄n(ds)

−
(∫

t∈T
Ṁn(s; θ̂n)Ṁn(s; θ

∗
n)

⊤N̄n(ds)

)−1 ∫
t∈T

Ṁn(s; θ̂n)ḡ(s)N̄n(ds)

where θ∗n = γθ0 + (1 − γ)θ̂n, 0 < γ < 1. Since EV̄n(s; θ0) = 0 , V̄n(s; θ0) is a martingale

difference sequence. We can apply the functional central limit theorem to V̄n(s; θ0), just as

we apply it to M̄n(s; θ0), getting:

V̄n
d→ BΓ

where the covariance structure Γ is defined as before.

Proposition 13 Under H1,n, Assumptions A1-A6 and C1, we have

√
n(θ̂n − θ0)

d→ N(φ,Ω′)

where

φ = −Σ−1
ṀṀ⊤

∫
s∈T

Ṁ0(s; θ0)g(s)EΛ1(ds; θ0)

and

Ω′ = Σ−1
ṀṀ⊤ΣΣ

−1
ṀṀ⊤

Finally, we discuss the asymptotic behavior of Tn under H1,n. First, notice that

√
nM̄n(s; θ̂n) = Wn

√
nM̄n(s; θ0)

where Wn is the empirical projection operator, defined in previous sections. Replacing
√
nM̄n(s; θ) by

√
nV̄n(s; θ) + g(s) , we have

√
nM̄n(s; θ) =

√
nV̄n(s; θ̂n) + g(s) = Wn

√
nV̄n(s; θ0) +Wng(s)

14



The first element is the linear approximation to Mn(t; θ0) under H0, the second term intro-

duces a mean in the process Mn(t; θ0). Thus, the asymptotic distribution of Tn under H1,n

is the same Gaussian process obtained under the null, but centered at the function C where

C(s) = Wg(s)

Proposition 14 Under H1,n, Assumptions A1-A6, and C1, we have

Tn
d→ T =

∫
s∈T

(BΨ(s) + C(s))2EΛ(ds; θ0)

Since C(s) is the projection of g(s) onto the orthogonal space of Ṁ(s; θ0), the case

of C(s) = 0 corresponds to when g(s) is a linear combination of Ṁ(s; θ0). However, in a

general situation, the case g(s) = β⊤Ṁ(s; θ0) is unlikely to occur since Ṁ(s; θ0) will depend

on θ0, which is unknown.

3.2.3 Matrix Representation of the Test Statistic

Since the asymptotic distribution of the test statistic Tn is not distribution free, the

critical values have to be obtained by bootstrap. In this subsection, we represent Tn in

terms of matrices to gain insights on the bootstrap.

Let M̄n(θ) is the Nn× 1 vector introduced before. The test statistic now can be written

as

Tn = M̄n(θ̂n)
⊤M̄n(θ̂n)

Let Ṁn(θ) be the Nn × k matrix defined before, we have

√
n(θ̂n − θ0) =

√
n
(
Ṁn(θ0)

⊤Ṁn(θ0)
)−1

Ṁn(θ0)
⊤M̄n(θ0) + op(1) (10)

Equation 10 is similar to the linearization of the nonlinear least square estimator.

A straightforward asymptotic expansion of the objective function yields:

M̄n(θ0)
⊤M̄n(θ0) = M̄n(θ̂n)

⊤M̄n(θ̂n)+ (θ̂n − θ0)
⊤
(
Ṁn(θ̂n)

⊤Ṁn(θ̂n)
)
(θ̂n − θ0)+ op(1) (11)

Equation 11 shows that Tn underestimates M̄n(θ0)
⊤M̄n(θ0). We could further rewrite

the proposed test statistic as:

Tn = M̄n(θ0)
⊤M̄n(θ0)−M̄n(θ0)

⊤Ṁn(θ0)
(
Ṁn(θ0)

⊤Ṁn(θ0)
)−1

Ṁn(θ0)
⊤M̄n(θ0)+op(1) (12)

Define

Pn(θ0) = Ṁn(θ0)
(
Ṁn(θ0)

⊤Ṁn(θ0)
)−1

Ṁn(θ0)
⊤

Wn(θ0) = I− Pn(θ0)

15



Then

Tn = M̄n(θ0)
⊤Wn(θ0)M̄n(θ0) + op(1) (13)

Equation 13 indicates that Tn can be understood as an overidentification test, analogous

to Hansen’s J test or Sargan test. Furthermore, Compare to Hansen or Sargan tests, our

test can not have an asymptotic standard distribution since the number of overidentifying

restrictions Nn − k is not fixed. Furthermore, the fact that we can express Tn in terms of

projections is what allows us to propose a simple multiplier bootstrap procedure to estimate

the critical value in the next section.

4. Bootstrap Test

From previous sections, it is clear that asymptotic distributions of both M̄n(t; θ̂n) and

Tn depend on the DGP. To overcome this nonpivotality, we propose two simple multiplier

bootstrap procedures to estimate the asymptotic distribution of Tn. We first introduce a

multiplier bootstrap procedure for ML estimators, followed by a procedure for MD estima-

tors.

4.1 Multiplier Bootstrap for ML Estimators

The proposed multiplier bootstrap test procedure is based on rescaling
√
nM̄n(t; θ̃n).

The test statistic is defined as

T ∗
n = M̄∗

n(θ̃n)
⊤M̄∗

n(θ̃n) (14)

where the jth element of the vector M̄∗
n(θ̂n) is M̄

∗
n(tj ; θ̂n), and

M̄∗
n(t; θ̃n) =

1

n

n∑
j=1

(
Nj(t)− Λj(t; θ̃n)

)
εj + Ṁn(t; θ̃n)

1

n

n∑
j=1

l(tj ; θ̃n)εj

and here {εj} is a sequence of i.i.d random variables with zero mean and unit variance.

Furthermore, {εj} is independent with the underlying counting process. Common choices

of distributions of εj include the Standard Normal, Rademacher and Mammen’s two-point

distribution.

Let ⇒∗ denote the weak convergence under the bootstrap law, and by the conditional

multiplier central limit theorem, we have

Proposition 15 With proper assumptions,

• Under the null,
√
nM̄∗

n(t; θ̃n) ⇒∗ BΦ(t)

• Under H1,
√
nM̄∗

n(t; θ̃n) ⇒∗ BΦ(t), except that the θ0 must be replaced by θ1 in the

definition of Φ, Γ and Ω.
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• Under H1,n,
√
nM̄∗

n(t; θ̃n) ⇒∗ BΦ∗(t).

Corollary 16 Let Ĉ1−α be the (1− α)-quantile of the empirical distribution of T ∗
n , and let

C1−α be its limit. We have:

Pr{Tn > C1−α} →


α under the null

1 under the alternative

κ ∈ (α, 1) under the sequence of local alternatives

In detail, one would test the null hypothesis as follows

1. Calculate the test statistic Tn.

2. Generate {εj} a sequence of i.i.d random variables with zero mean and unit vari-

ance. This sequence is also independent of the original sample. Then calculate T ∗
n by

equation 14.

3. Repeat step 2 B times. This produces a set of B independent values of T ∗
n that share

the asymptotic distribution of Tn.

4. The proposed test of nominal level α rejects the null if Tn > Ĉ1−α.

4.2 Multiplier Bootstrap for MD Estimators

By Equation 13, we specify the test statistic T ∗∗
n as

T ∗∗
n = M̄∗∗

n (θ̂n)
⊤Wn(θ̂n)M̄

∗∗
n (θ̂n) (15)

where the jth element of the vector M̄∗
n(θ̂n) is M̄

∗
n(sj ; θ̂n), and

M̄∗
n(s; θ̂n) =

1

n

n∑
j=1

(
Nj(s)− Λj(s; θ̂n)

)
εj

{εi} is a sequence of i.i.d random variables with zero mean and unit variance. Furthermore,

{εi} is independent with the underlying counting process.

Proposition 17 Under Proper Assumptions and either H0,H1 or under H1,n, we have

√
nM̄∗∗

n (s; θ̂n) ⇒ BΨ(s) a.s

where under H1,n, the θ0 must be replaced by θ1 in the definition of Ψ, ΣṀṀ⊤, ΣṀ⊤Γ and

Σ.

Since any projection is a linear continuous operator, projections of
√
nM̄n(s; θ0) and

√
nM̄∗∗

n (s; θ̂n)

also enjoy the same limit distribution.
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Corollary 18 Let Ĉ1−α be the (1−α)-quantile of the empirical distribution of T ∗∗
n , and let

C1−α be its limit. We have:

Pr{Tn > C1−α} →


α under the null

1 under the alternative

κ ∈ (α, 1) under the sequence of local alternatives

Hence, the proposed bootstrap test has an α asymptotic level, it is consistent, and it is able

to detect alternatives tending to the null at the
√
n rate.

The above corollary justifies the estimation of the asymptotical critical value of Tn by

those of T ∗∗
n . The following procedure is employed to estimate the critical value.

1. Minimize the objective function, obtain consistent estimators and calculate the test

statistic Tn.

2. Obtain the estimated martingale process M̄n(s; θ̂n) as well as its first derivatives

Ṁn(s; θ̂n) and construct the n× k matrix Ṁn(θ̂n).

3. Generate {εj} a sequence of i.i.d random variables with zero mean and unit variance.

This sequence is also independent of the original sample. Then compute the multiplier

bootstrap estimated martingale vector M̄∗
n(θ̂n). Calculate T ∗∗

n by equation 15.

4. Repeat step 3 B times. This produces a set of B independent values of T ∗∗
n that share

the asymptotic distribution of Tn.

5. The proposed test of nominal level α rejects the null if Tn > Ĉ1−α.

5. Simulations

This section illustrates the performance of our proposed test. First, we consider a one-

observation counting process case where the intensity is the form of the Hawkes process:

DGP1.0 λ(s|F(s−)) = µ+
∑
i:si<t

exp(αxi)

(
1 +

s− si
c

)−1

(16)

This model is widely applied in the seismology literature. It aims to describe how past

earthquakes and their magnitudes would affect the occurrence times of future earthquakes.

In the model, {si} denotes a sequence of occurrence times and {xi} is a sequence of corre-

sponding magnitudes.

We set θ0 = (µ, α, c)⊤ = (0.02, 0.98, 0.018)⊤. Instead of fixing the number of events

(equivalent to the number of individuals in n-observation case), we fix the time interval for

the convenient of simulation. We consider three time intervals: T = (0, 3000),T = (0, 4000)
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ML Estimator MD Estimator

10 5 1 10 5 1

T = 3000 9.2 4.4 0.7 8.7 3.5 1.0

T = 4000 9.7 5.2 1.1 9.1 3.8 0.6

T = 5000 9.7 5.2 1.3 8.9 4.3 0.6

Table 1: Size results (percentage). One-Observation Hawkes Process

DGP1.1 DGP1.2 DGP1.3

10 5 1 10 5 1 10 5 1

T = 3000 74.1 60.2 32.9 89.8 81.2 59.2 99.8 99.5 98.5

T = 4000 84.3 75.9 51.6 96.8 92.1 77.0 99.9 99.9 99.9

T = 5000 92.7 86.5 64.7 98.5 97.2 88.0 100.0 100.0 100.0

Table 2: Power results (percentage), ML Estimator, One-Observation Hawkes process

and T = (0, 5000). The number of bootstrap replications mk B = 1000, and we conduct

1000 experiments.

Table 1 reports the empirical rejection rate under the null hypothesis for three nominal

levels: 0.1, 0.05, 0.01. Overall, the size distortion is moderate.

Next, we consider a power comparison for the Hawkes process model. We consider

two three alternative processes that deviate from the null in different directions. All three

alternatives are also belonging to one class of Hawkes processes:

λ(s|F(s−)) = µ+A
∑
i:si<t

exp(αxi)

(
1 +

s− si
c

)−p

(17)

with the same specification of θ0 = (µ, α, c)⊤ = (0.02, 0.98, 0.018)⊤, the three alternatives

are different in other two parameters:

• DPG1.1 A = 5.0, p = 1.5

• DGP1.2 A = 9.0, p = 1.9

• DGP1.3 A = 9.0, p = 1.5

Note that the number of occurred events increases with the value of A, but decreases with

the value of p. Table 3 reports the percentage power for nominal levels of 0.1, 0.05, 0.01.

Next, we consider n-observation models. Instead of directly specifying the intensity

function, here we utilize Theorem 4 and write down the hazard rates for each duration
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DGP1.1 DGP1.2 DGP1.3

10 5 1 10 5 1 10 5 1

T = 3000 32.9 21.7 8.9 58.1 44.2 22.6 75.2 62.7 36.9

T = 4000 40.0 26.5 10.1 66.8 56.0 31.2 82.5 71.8 45.4

T = 5000 44.0 31.4 12.2 76.6 64.4 38.7 88.3 79.8 57.8

Table 3: Power results (percentage), MD Estimator, One-Observation Hawkes process

Size (Percentage)

10 5 1

n = 100 11.7 6.9 1.7

n = 200 10.5 6.0 1.8

n = 300 10.2 4.9 1.8

Table 4: Size results (percentage). n-Observation Process

within one counting process. The null model has the following specification:

DGP2.0 : hi,dk(t) = αtα−1 exp(β
k−1∑
j=1

ti,j) (18)

where subscript i denotes an individual (an observation process). This specification extends

the static Generalized Accelerated Failure Time model of Ridder (1990) to a dynamic frame-

work. It corresponds to an expression that specifies a duration in terms of a multiplicative

structure between covariates and an error term:

tαi,k = exp(−β
k−1∑
j=1

ti,j)ui,k

where {ui,k} is a sequence of i.i.d EXP (1) random variables.

We set the true parameters as θ0 = (α, β)⊤ = (0.5,−0.05)⊤. The sample sizes are

100, 200 and 300. Like before, the number of bootstrap replications mk B = 1000, and we

conduct 1000 experiments. Table 4 presents the empirical rejection rates under the null

hypothesis for three nominal levels:0.1, 0.05 and 0.001. The results suggest that the size

distortion is small even at the small sample case, and as the sample size increases, the size

distortion disappears.

We consider two alternatives:

DGP2.1 : tαk = (1 + β
k−1∑
j=1

ti,j)
0.75ui,k
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DGP2.1 DGP2.2

10 5 1 10 5 1

n = 100 83.2 74.7 50.0 100.0 100.0 100.0

n = 200 95.0 92.8 88.3 100.0 100.0 100.0

n = 300 97.6 96.8 95.5 100.0 100.0 100.0

Table 5: Power results (percentage), n-Observation process

where {ui,k} is a sequence of i.i.d EXP (1) random variables.. The parameters are set as

α = 0.5, β = 0.75.

DGP2.2 : tαk = exp(−β
k−1∑
j=1

ti,j)ui,k

where {ui,k} is a sequence of i.i.d U(1.0, 1.5) random variables. The parameters are set as

α = 0.5, β = −0.05.

Table 5 presents results. To summarize, all four tables have illustrated the effectiveness

of the proposed test. Under the null, our test controls the type I error, and under the

alternative, the power of test seems depends on specific DGP.

6. Empirical Application

To illustrate how the proposed testing scheme works in practice, we consider one typical

example. This example studies ‘extreme occurrences’ in US stock market, as measured by

empirical quantiles of the Dow Jones Index (DJI), see Cavaliere et al. (2022); Embrechts

et al. (2011). We consider the DJI daily returns observed over the period January 1, 1994

to December 31, 2010. The event times corresponding to (negative) extreme returns are

given by the trading days where the corresponding daily return is below the 10% empirical

quantile. In the end, we have N(T ) = 429 events during the period T = 6144 days.

Cavaliere et al. (2022) consider the following intensity specification:

λ(s; θ) = µ+ α
∑
i:si<t

β exp(−β(s− si))

Using the minimum distance estimation scheme described in section 3.2, and imposing

parameter restrictions µ, β > 0 and 0 < α < 1. With ML estimation, we obtain the

following estimators: µ̂ = 0.013(0.004), α̂ = 0.807(0.066), β̂ = 0.019(0.004), where the

standard errors are within the parenthese. Using MD estimation method, we obtain the

following estimators: µ̂ = 0.011(0.007), α̂ = 0.839(0.102), β̂ = 0.025(0.008). The value
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of the Cramér-Von Mises statistics in ML and MD are TML
n = 0.016 and TMD

n = 0.005,

respectively. After bootstraping 1000 times, the bootstrap critical values at 5% level are

cML
95% = 0.024 and cMD

95% = 0.007, respectively. Hence, we conclude that the model is corrected

specified.

7. Conclusion

In this paper, we propose an omnibus test for general counting process specifications.

We contribute to the literature in the following three areas. First, our test statistic is based

on an empirical process argument. Conventionally, goodness-of-fit test for counting pro-

cesses are based on the random time change theorem, where the focus is to test whether

the transformed duration follows standard exponential distribution. As demonstrated by

the Doob-Meyer decomposition result, the proposed test is more intuitive, as the difference

between a counting process and its compensator constitutes an empirical process. Second,

we explicitly take the estimation effect into consideration. The implementation of the ran-

dom time change theorem heavily relies on a correct specification. When model parameters

are estimated, the estimation effect will affect the transformation in a way that the trans-

formed duration is no longer standard exponential, and its exact distribution is difficult,

if not impossible, to obtain. On the other hand, although the estimation effect still exist

under the empirical process framework, with mild conditions (e.g., linear expansion of the

ML estimator), the limit distribution of the test statistic is trackable. Third, our framework

is valid for both the single-observational process and the n-observational process. The for-

mer is widely used in high-frequency trading data, while the later can be used to analysis

individual-decision making processes.

We analyze limit distributions of the proposed test statistic under both the null and

the local alternative hypotheses. A multiplier bootstrap procedure is introduced to obtain

critical values. This bootstrap procedure is easy to implement and does not require estima-

tion of the model at each round. Monte Carlo exercises are conducted, and the simulation

results show that the proposed test has good size and power properties. Finally, a simple

real-life example is studied to demonstrate our test procedure.
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A. Proofs

A.1 Theorem 1

The proof of theorem 1 is based on the Time Scaling Theorem, also known as the Random

Time Change Theorem. Here we briefly introduce this building block.

A.1.1 Time Rescaling Theorem

Theorem 19 Suppose we have a counting process Ni(t) with conditional intensity function

λi(t | Fi(t−)) on (0, T ] and with occurrence times 0 < Si1 < Si2, . . . , SNi(T ) < T . Suppose

further that the duration distributions are continuous with fDij |Fi(Si(j−1))(d) on (si(j−1), T ],

for all j ≥ 1. If we define

Zi1 =

∫ Si1

0
λi(t | Fi(t−))dt

and

Zij =

∫ Sij

Si(j−1)

λi(t | Fi(t−))dt, j = 2, . . . , Ni(T )

then, Zi1, . . . , Zi(Ni(T )) are i.i.d EXP(1) random variables.

The proof of the time rescaling theorem has been extensively studied in point process liter-

ature. Here, we only provide a simplified version. A lemma is needed.

Lemma. SupposeD is a continuous random variable having p.d.f fD(d) and c.d.f FD(d),

and suppose further that fD(d) > 0 on an inteval (A,B) and fD(d) = 0 otherwise. Let λ(d)

be the associated hazard function of D. If we define a random variable Y by Y = G(D)

where

G(d) =

∫ d

A
λ(u)du

then Y ∼ EXP (1).

Proof of the Lemma. Denote the c.d.f of EXP(1) distribution as FExp. We know

that if we define Y by

Y = F−1
Exp(FD(D))

then Y ∼ EXP (1). It remains to show that for G(d), we get

G(d) = F−1
Exp(FD(d))

.
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Notice that the inverse function F−1
Expis

F−1
Exp(w) = − log(1− w)

Also recall that the survival function 1− FD(d) is expressed as

1− FD(d) = exp

(
−
∫ d

−∞
λ(u)du

)
hence,

FD(d) = 1− exp

(
−
∫ d

−∞
λ(u)du

)
Thus,

F−1
Exp(FD(d)) = − log(1− FD(d))

=

∫ d

A
λ(u)du = G(d)

Proof of the theorem. Note that the transformed duration are

Zij =

∫ sij

si(j−1)

λi(t | Fi(t−))dt

with si0 = 0. Applying the lemma to Di1 with Zi1 = G1(Di1) where

G1(d) =

∫ d

0
λi(t | Fi(t−))dt

we get Zi1 ∼ EXP (1). Continuing to the next event time and defining Di2 = Si2−Si1 with

Zi2 = G2(Di2) where

G2(d) =

∫ d

si1

λi(t | Fi(t−))dt

we get Zi2 ∼ EXP (1) and, furthermore, this is the same distribution results regardless of

the value Zi1 = zi1. Thus, the conditional density function fZi2|Zi1
(zi2 | Zi1 = zi1) does not

depend on zi1. Therefore, Zi1 is independent of Zi1. Continuing on, we get Zij ∼ EXP (1)

independently of all Zik for k < j, for all j = 1, . . . , Ni and for all possible valuesNi = Ni(T ).

A.1.2 Proof of Theorem 1

Proof We use Figure 1 to help illustrating the proof. Fix a time t, the value of Λi(t) is:

Λi(t) =
5∑

j=1

zij + z̄i6

where

zij = Λi(sij)− Λi(si(j−1)) = Gij(dij), j = 1, . . . , 5, si0 = 0
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Figure 1: A Possible Realization of a Counting Process and its Cumulative Intensity

and

z̄i6 = Λi(t)− Λi(si5)

Here Gij(·) : R+ → R+ are non-decreasing functions. In the figure, dij are complete du-

ration, d̄i6 is an incomplete duration. Our proof consists of two steps, first, we show that

zij = Hij(dij), where Hij(·) are the corresponding integrated hazard rates of Dij . Second,

we show that z̄i6 = Hi6(d̄i6).

From the time rescaling theorem, we known that zij , j = 1, . . . , 5 are the realizations of

an EXP(1) random variable, thus

P (Zij > x) = P (Gij(Dij) > x) = P (Dij > G−1
ij (x))

and,

1− FDij (G
−1
ij (x)) = exp

(
−HDij (G

−1
ij (x))

)
= exp(−x)

In the above equation, the first equality comes from the relationship between the survival

function and the integrated hazard rate. Thus, we conclude

Gij(·) = HDij (·)

zij = Gij(dij) = HDij (dij)

Next, notice that

P (Zi6 > z̄i6) = P (Gi6(Di6) > z̄i6) = P (Di6 > G−1
i6 (z̄i6))

thus,

1− FDi6(G
−1
i6 (z̄i6)) = exp(−z̄i6)
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Further notice that (as illustrated by the figure)

G−1
i6 (z̄i6) = d̄i6

Hence,

1− FDi6(d̄i6) = exp(−z̄i6)

and

z̄i6 = − log
(
1− Fij(d̄i6)

)
=

∫ d̄i6

0
hDi6(x)dx = HDi6(d̄i6)

B. Minimum Distance Estimation of Counting Process

The continuum of moment restrictions

M0(t; θ0) = EM(t; θ0) = E(N1(t)− Λ1(t; θ0|F1(t−))) = 0

provides an estimation channel. To derive the estimator, we impose the following assump-

tions:

• A1. For each ε > 0.

inf
||θ−θ0||≥ε

||EΛ1(·; θ0)− EΛ1(·; θ)||EΛ1(·;θ0) > 0

• A2. The process (t, θ) → Λj(t, θ), j = 1, 2, . . . is continuous with probability one.

• A3. Λj(t; θ), j = 1, 2, . . . is bounded in t and θ.

• A4. Θ ∈ Rk is compact.

Assumption A1 is a weak identification condition. Assumption A2 suggests that Λj(·; θ), j =
1, 2, . . . has a (random) Lebesgue intensity λj(·; θ) with values in an appropriate Skorokhod

Space. This guarantees continuity (but not differentiablity) of Λj(t; θ) in t and allows for

unexpected jumps in the intensity function. Assumption A3 is used in ÖZTÜRK and

Hettmansperger (1997), while Assumption A4 is standard in the literature.

By Assumption A1, we have

P (M0(t; θ) = 0) < 1, θ ̸= θ0

thus, M(t; θ) ̸= 0 in a non-null space of T , and we have∫
T
M0(t; θ0)

2EΛ1(dt; θ0) = 0
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but ∫
T
M0(t; θ)

2EΛ1(dt; θ0) ̸= 0 ∀θ ̸= θ0

Hence,

θ0 = argmin
θ∈Θ

∫
T
M0(t; θ)

2EΛ1(dt; θ0) = argmin
θ∈Θ

E{⟨N1 − Λ1(·, θ), N2 − Λ2(·, θ)⟩N3
}

By Lemma 3 of Kopperschmidt and Stute (2013), the above equation can be re-written

as:

θ0 = argmin
θ∈Θ

||EΛ1(·; θ0)− EΛ1(·; θ)||2EΛ1(·;θ0)

where

||f ||µ =
[∫

T
f2(t)µ(dt)

]1/2
is a semi-norm. By Lemma 5 of the same paper, we have

||N̄n − Λ̄n(·, θ)||2N̄n

p→ ||EΛ1(·; θ0)− EΛ1(·; θ)||EΛ1(·;θ0)

where

N̄n =
1

n

n∑
j=1

Nj , Λ̄n(·; θ) =
1

n

n∑
j=1

Λj(·; θ)

We can write the minimum distance estimator as

θ̂n = argmin
θ∈Θ

||N̄n − Λ̄n(·, θ)||2N̄n
= argmin

θ∈Θ

∫
T
M̄n(t; θ)

2N̄n(dt)

= argmin
θ∈Θ

1

n

n∑
j=1

M̄n(tj ; θ)
2

where M̄n(t; θ) = N̄n(t) − Λ̄n(t, θ), and n is the number of jumps (events) in the counting

process N(s), s ∈ T . The quantity ||N̄n − Λ̄n(·, θ)||2N̄n
represents an overall measure of fit

of Λ̄n(·, θ) to N̄n. This objective function is a weighted Cramér-von Mises statistic, which

can be interpreted as a minimum distance estimator.

Theorem 20 Under Assumptions A1-A4, we have

θ̂n
a.s→ θ0

Proof See Li (2022)

In order to obtain asymptotic normality, some additional assumptions are required.

• A5. Λj(t; ·), j = 1, 2, . . . is once differentiable in a neighborhood of θ0 and satisfies

Λ̇j(t; θ) is square integrable w.r.t EΛj(·; θ0) where N0 is a neighborhood of θ0 and

Λ̇j(t; θ) = ∂Λj(t; θ)/∂θ.
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• A6. θ0 ∈ int(Θ).

Assumption A5 is a standard smoothness condition. Assumption A6 is also standard.

Theorem 21 Under Assumptions A1-A6, we have

√
n(θ̂n − θ0)

d→
(∫

T
Ṁ0(t; θ0)Ṁ0(t; θ0)

⊤EΛ1(dt; θ0)

)−1 ∫
T
Ṁ0(t; θ0)BΓEΛ1(dt; θ0)

where Ṁ0(t; θ0) = ∂M0(t; θ)/∂θ|θ=θ0 and BΓ denotes a centered Gaussian process with co-

variance structure given by Γ(t1, t2) = E(M1(t1; θ0)M1(t2; θ0)).

Proof See Li (2022).

This theorem naturally leads to the following corollary.

Corollary 22 Under Assumptions A1-A8, we have

√
n(θ̂n − θ0)

d→ N(0,Ω)

where

Ω =

(∫
T
Ṁ0(t; θ0)Ṁ0(t; θ0)

⊤EΛ1(dt; θ0)

)−1

×∫
T

∫
T
Ṁ0(t1; θ0)Ṁ0(t2; θ0)

⊤Γ(t1, t2)EΛ1(dt1; θ0)EΛ1(dt2; θ0)×(∫
T
Ṁ0(t; θ0)Ṁ0(t; θ0)

⊤EΛ1(dt; θ0)

)−1

Proof This result follows immediately from Theorem 5 and the fact that the integrated

weighted Gaussian process follows a normal distribution.
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